【題目】在平面直角坐標系xOy中,對于點P(xy),我們把點(-y+1x+1)叫做點P伴隨點.已知點A1的伴隨點為A2,點A2的伴隨點為A3,點A3的伴隨點為A4,,這樣依次得到點A1,A2,A3,An,….若點A1的坐標為(24),點A2017的坐標為 ( )

A. (-33) B. (-2,-2) C. (3-1) D. (2,4)

【答案】D

【解析】

根據(jù)伴隨點的定義依次求出各點,不難發(fā)現(xiàn),每4個點為一個循環(huán)組依次循環(huán),用2017除以4,根據(jù)商和余數(shù)的情況確定點A2017的坐標即可.

∵點A1的坐標為(24),
A2-4+1,2+1)即(-3,3),A3-3+1,-3+1)即(-2,-2),A42+1,-2+1)即(3,-1),A524),

依此類推,每4個點為一個循環(huán)組依次循環(huán),
2017÷4=5041
∴點A2017的坐標與A1的坐標相同,為(24);
故選D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如果關于x的一元二次方程ax2+bx+c=0有兩個實數(shù)根,且其中一個根為另一個根的3倍,則稱這樣的方程為立根方程.以下關于立根方程的說法:

方程x2﹣4x﹣12=0是立根方程;

若點(p,q)在反比例函數(shù)y=的圖象上,則關于x的方程px2+4x+q=0是立根方程;

若一元二次方程ax2+bx+c=0是立根方程,且相異兩點M(1+t,s),N(4﹣t,s)都在拋物線y=ax2+bx+c上,則方程ax2+bx+c=0的其中一個根是

正確的是( 。

A. ①② B. C. D. ②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長青化工廠與A、B兩地有公路、鐵路相連.這家工廠從A地購買一批每噸1000元的原料運回工廠,制成每噸8000元的產(chǎn)品運到B地.已知公路運價為1.5/(噸·千米),鐵路運價為1.2/(噸·千米),且這兩次運輸共支出公路運輸費15000元,鐵路運輸費97200元.

求:(1)該工廠從A地購買了多少噸原料?制成運往B地的產(chǎn)品多少噸?

2)這批產(chǎn)品的銷售款比原料費與運輸費的和多多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】目前由重慶市教育委員會,渝北區(qū)人們政府主辦的陽光下成長重慶市第八屆中小學生藝術展演活動落下帷幕,重慶一中學生舞蹈團、管樂團、民樂團、聲樂團、話劇團等五大藝術團均榮獲藝術表演類節(jié)目一等獎,重慶一中獲優(yōu)秀組織獎,重慶一中老師李珊獲先進個人獎,其中重慶一中舞蹈團將代表重慶市參加明年的全國集中展演比賽,若以下兩個統(tǒng)計圖統(tǒng)計了舞蹈組各代表隊的得分情況:

1m   ,在扇形統(tǒng)計圖中分數(shù)為7的圓心角度數(shù)為   度.

2)補全條形統(tǒng)計圖,各組得分的中位數(shù)是   分,眾數(shù)是   分.

3)若舞蹈組獲得一等獎的隊伍有2組,已知主辦方各組的獎項個數(shù)是按相同比例設置的,若參加該展演活動的總隊伍數(shù)共有120組,那么該展演活動共產(chǎn)生了多少個一等獎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+cx軸交于點A(-2,0),頂點坐標為(2,n),與y軸的交點在(0,3),(0,4)之間(包含端點),則下列結論:①當x>6時,y<0;②5a+b>0;③a≤-,④4≤n<5中,正確有(  

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AOB=30°,OP平分AOB,PDOBD,PCOBOAC,若PC=6,則PD=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點的坐標為(04),線段的位置如圖所示,其中點的坐標為(,),點的坐標為(3,).

(1)將線段平移得到線段,其中點的對應點為,點的對應點為點.

①點平移到點的過程可以是:先向 平移 個單位長度,再向 平移 個單位長度;

②點的坐標為 .

(2)(1)的條件下,若點的坐標為(40),連接,畫出圖形并求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在熱氣球A上看到正前方橫跨河流兩岸的大橋BC,并測得B、C兩點的俯角分別為45°、35°.已知大橋BC與地面在同一水平面上,其長度為100m,請求出熱氣球離地面的高度.

(結果保留整數(shù),參考數(shù)據(jù):sin35°≈,cos35°≈,tan35°≈)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AB=13,BC=50,BC邊上的高為12.點P從點B出發(fā),沿B﹣A﹣D﹣A運動,沿B﹣A運動時的速度為每秒13個單位長度,沿A﹣D﹣A運動時的速度為每秒8個單位長度.點Q從點 B出發(fā)沿BC方向運動,速度為每秒5個單位長度.P、Q兩點同時出發(fā),當點Q到達點C時,P、Q兩點同時停止運動.設點P的運動時間為t(秒).連結PQ.

(1)當點P沿A﹣D﹣A運動時,求AP的長(用含t的代數(shù)式表示).

(2)連結AQ,在點P沿B﹣A﹣D運動過程中,當點P與點B、點A不重合時,記APQ的面積為S.求S與t之間的函數(shù)關系式.

(3)過點Q作QRAB,交AD于點R,連結BR,如圖.在點P沿B﹣A﹣D運動過程中,當線段PQ掃過的圖形(陰影部分)被線段BR分成面積相等的兩部分時t的值.

(4)設點C、D關于直線PQ的對稱點分別為C′、D′,直接寫出C′D′BC時t的值.

查看答案和解析>>

同步練習冊答案