如圖是二次函數(shù)y=ax2+bx+c的部分圖象,由圖象可知不等式ax2+bx+c<0的解集是( )
A.﹣1<x<5 B.x>5 C.x<﹣1且x>5 D.x<﹣1或x>5
科目:初中數(shù)學 來源: 題型:
為提高運輸效率、保障高峰時段人們的順利出行,地鐵公司在保證安全運行的前提下,縮短了發(fā)車間隔,從而提高了運送乘客的數(shù)量.縮短發(fā)車間隔后比縮短發(fā)車間隔前平均每分鐘多運送乘客50人,使得縮短發(fā)車間隔后運送14400人的時間與縮短發(fā)車間隔前運送12800人的時間相同,那么縮短發(fā)車間隔前平均每分鐘運送乘客多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
.數(shù)學活動課上,老師提出這樣一個問題:如果AB=BC,∠ABC=60°,∠APC=30°,連接PB,那么PA、PB、PC之間會有怎樣的等量關系呢?經過思考后,部分同學進行了如下的交流:
小蕾:我將圖形進行了特殊化,讓點P在BA延長線上(如圖1),得到了一個猜想:PA2+PC2=PB2.
小東:我假設點P在∠ABC的內部,根據題目條件,這個圖形具有“共端點等線段”的特點,可以利用旋轉解決問題,旋轉△PAB后得到△P′CB,并且可推出△PBP′,△PCP′分別是等邊三角形、直角三角形,就能得到猜想和證明方法.
這時老師對同學們說,請大家完成以下問題:
(1)如圖2,點P在∠ABC的內部,
①PA=4,PC=,PB= .
②用等式表示PA、PB、PC之間的數(shù)量關系,并證明.
(2)對于點P的其他位置,是否始終具有②中的結論?若是,請證明;若不是,請舉例說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
圖1中,二次函數(shù)y=﹣ax2﹣4ax﹣的圖象c交x軸于A,B兩點(A在B的左側),過A點的直線交c于另一點C(x1,y1),交y軸于M.
(1)求點A的坐標,并求二次函數(shù)的解析式;
(2)過點B作BD⊥AC交AC于D,若M(0,﹣3)且Q點是直線AC上的一個動點.求出當△DBQ與△AOM相似時點Q的坐標;
(3)設P(﹣1,2),圖2中連CP交二次函數(shù)的圖象于另一點E(x2,y2),連AE交y軸于N.OM•ON是否是一個定值?如果是定值,求出該值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com