14.如圖,線段AB=4,C為線段AB上的一個(gè)動(dòng)點(diǎn),以AC、BC為邊作等邊△ACD和等邊△BCE,⊙O外接于△CDE,則⊙O半徑的最小值為( 。
A.4B.$\frac{2\sqrt{3}}{3}$C.$\frac{3\sqrt{2}}{2}$D.2

分析 分別作∠A與∠B角平分線,交點(diǎn)為P.由三線合一可知AP與BP為CD、CE垂直平分線;再由垂徑定理可知圓心O在CD、CE垂直平分線上,則交點(diǎn)P與圓心O重合,即圓心O是一個(gè)定點(diǎn);連OC,若半徑OC最短,則OC⊥AB,由△AOB為底邊4,底角30°的等腰三角形,可求得OC=$\frac{2\sqrt{3}}{3}$.

解答 解:如圖,分別作∠A與∠B角平分線,交點(diǎn)為P.
∵△ACD和△BCE都是等邊三角形,
∴AP與BP為CD、CE垂直平分線.
又∵圓心O在CD、CE垂直平分線上,則交點(diǎn)P與圓心O重合,即圓心O是一個(gè)定點(diǎn).
連接OC.
若半徑OC最短,則OC⊥AB.
又∵∠OAC=∠OBC=30°,AB=4,
∴OA=OB,
∴AC=BC=2,
∴在直角△AOC中,OC=AC•tan∠OAC=2×tan30°=$\frac{2\sqrt{3}}{3}$.
故選:B.

點(diǎn)評(píng) 本題考查了圓的綜合題.需要掌握等邊三角形的“三線合一”的性質(zhì),三角形的外接圓圓心為三角形的垂心,點(diǎn)到直線的距離垂線段最短以及解直角三角形等知識(shí)點(diǎn).難度不大,注意數(shù)形結(jié)合數(shù)學(xué)思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

6.等邊三角形的一條中線長(zhǎng)為$\sqrt{3}$,則這個(gè)三角形邊長(zhǎng)等于2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若x2+mx+n分解因式的結(jié)果是(x+2)(x-1),則m+n=( 。
A.1B.-2C.-1D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,梯形OABC中,AB∥OC,BC所在的直線為y=x+12,點(diǎn)A坐標(biāo)為
A (0,b),其中b>0,點(diǎn)Q從點(diǎn)C出發(fā)經(jīng)點(diǎn)B到達(dá)點(diǎn)A,它在BC上的速度為每秒$\sqrt{2}$個(gè)單位,它在AB上的速度為每秒1個(gè)單位,點(diǎn)P從點(diǎn)C出發(fā),在線段CO上來(lái)回運(yùn)動(dòng),速度為每秒2個(gè)單位,當(dāng)Q到達(dá)A點(diǎn)時(shí),P也停止運(yùn)動(dòng). P、Q兩點(diǎn)同時(shí)從C點(diǎn)出發(fā),運(yùn)動(dòng)時(shí)間為t秒,過(guò)P作直線l垂直于x軸,如圖,若以BQ為半徑作⊙Q.
(1)當(dāng)⊙Q第一次和x軸相切時(shí),直接寫(xiě)出t和b的關(guān)系式;(用t表示b)
(2)當(dāng)Q在AB上運(yùn)動(dòng)時(shí),若⊙Q和x軸始終沒(méi)有交點(diǎn),求b的取值范圍;
(3)當(dāng)b=4時(shí),求直線l與⊙Q從第一次相切到第二次相切經(jīng)過(guò)的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖(1)已知:△ABC是等腰三角形,AB=BC,點(diǎn)D為△ABC外一點(diǎn),∠DBC=2∠DAC.
(1)求證:BD=BC.
(2)如圖2,若∠BAC=60°,BG平分∠ABD,交CD的延長(zhǎng)線于G,BG分別交AD、AC于點(diǎn)E、F,若EG=4EF,請(qǐng)你探究線段CF與BD的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

19.小明在課外學(xué)習(xí)時(shí)遇到這樣一個(gè)問(wèn)題:
定義:如果二次函數(shù)y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常數(shù))與y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常數(shù))滿(mǎn)足a1+a2=0,b1=b2,c1+c2=0,則稱(chēng)這兩個(gè)函數(shù)互為“旋轉(zhuǎn)函數(shù)”.
求y=-x2+3x-2函數(shù)的“旋轉(zhuǎn)函數(shù)”.
小明是這樣思考的:由y=-x2+3x-2函數(shù)可知a1=-1,b1=3,c1=-3,根據(jù)a1+a2=0,b1=b2,c1+c2=0求出a2,b2,c2,就能確定這個(gè)函數(shù)的“旋轉(zhuǎn)函數(shù)”.
請(qǐng)參考小明的方法解決下面的問(wèn)題:
(1)寫(xiě)出函數(shù)y=-x2+3x-2的“旋轉(zhuǎn)函數(shù)”;
(2)若函數(shù)y=-x2+$\frac{4}{3}$mx-2與y=x2-2nx+n互為“旋轉(zhuǎn)函數(shù)”,求(m+n)2015的值;
(3)已知函數(shù)y=-$\frac{1}{2}$(x+1)(x-4)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)A,B,C關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)分別是A1,B1,C1,試證明經(jīng)過(guò)點(diǎn)A1,B1,C1的二次函數(shù)與函數(shù)y=-$\frac{1}{2}$(x+1)(x-4)互為“旋轉(zhuǎn)函數(shù)”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在?ABCD中,∠A:∠B:∠C=2:3:2,則∠D的度數(shù)為(  )
A.36°B.60°C.72°D.108°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,已知兩條線段a、b(a>b)
(1)畫(huà)線段a+b;
(2)畫(huà)線段2a-b.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.解下列不等式組,并將解集在數(shù)軸上表示出來(lái).
$\left\{\begin{array}{l}{\frac{x-1}{2}≤1}\\{x-2<4(x+1)}\end{array}\right.$.

查看答案和解析>>

同步練習(xí)冊(cè)答案