【題目】萬州區(qū)某民營企業(yè)生產的甲、乙兩種產品,已知2件甲商品的出廠總價與3件乙商品的出廠總價相同,3件甲商品的出廠總價比2件乙商品的出廠總價多150.

1)求甲、乙商品的出廠單價分別是多少元?

2)為促進萬州經濟持續(xù)健康發(fā)展,為商家搭建展示平臺,為行業(yè)創(chuàng)造交流機會,2019年萬州區(qū)舉辦了多場商品展銷會.外地一經銷商計劃購進甲商品200件,購進乙商品的數(shù)量是甲的4倍,恰逢展銷會期間該企業(yè)正在對甲商品進行降價促銷活動,甲商品的出廠單價降低了,該經銷商購進甲的數(shù)量比原計劃增加了,乙的出廠單價沒有改變,該經銷商購進乙的數(shù)量比原計劃減少了,結果該經銷商付出的總貨款與原計劃的總貨款恰好相同,求的值.

【答案】1)甲、乙商品的出廠單價分別是9060元;(2的值為15.

【解析】

1)設甲、乙商品的出廠單價分別是、元,根據(jù)價格關系和總價相同建立方程組求解即可;

2)分別表示出實際購進數(shù)量和實際單價,利用單價×數(shù)量=總價,表示出甲乙的總價,再根據(jù)實際總貨款與原計劃相等建立方程求解.

解:(1)設甲、乙商品的出廠單價分別是、元,

,解得.

答:甲、乙商品的出廠單價分別是90、60.

2)由題意得:

解得:(舍去),.

答:的值為15.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P上一動點,連接AP,作∠APC=45°,交弦AB于點CAB=6cm

小元根據(jù)學習函數(shù)的經驗,分別對線段AP,PCAC的長度進行了測量.

下面是小元的探究過程,請補充完整:

1)下表是點P上的不同位置,畫圖、測量,得到線段AP,PC,AC長度的幾組值,如下表:

AP/cm

0

1.00

2.00

3.00

4.00

5.00

6.00

PC/cm

0

1.21

2.09

2.69

m

2.82

0

AC/cm

0

0.87

1.57

2.20

2.83

3.61

6.00

①經測量m的值是 (保留一位小數(shù)).

②在AP,PCAC的長度這三個量中,確定的長度是自變量,的長度和 的長度都是這個自變量的函數(shù);

2)在同一平面直角坐標系xOy中,畫出(1)中所確定的函數(shù)圖象;

3)結合函數(shù)圖象,解決問題:當ACP為等腰三角形時,AP的長度約為 cm(保留一位小數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,點M為二次函數(shù)yx2+2bx+3c圖象的頂點,一次函數(shù)ykx3k0)分別交x軸,y軸于點A,B

1)若b1c1,判斷頂點M是否在直線y2x+1上,并說明理由;

2)若該二次函數(shù)圖象經過點C1,﹣4),也經過點A,B,且滿足kx3x2+2bx+3c,求該一次函數(shù)解析式,并直接寫出自變量x的取值范圍;

3)設點P坐標為(m,n)在二次函數(shù)yx2+2bx+3c上,當﹣2≤m≤2時,b24≤n≤2b+4,試問:當b≥2b≤2時,對于該二次函數(shù)中任意的自變量x,函數(shù)值y是否始終大于﹣40?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2016年,某貧困戶的家庭年人均純收入為2500元,通過政府產業(yè)扶持,發(fā)展了養(yǎng)殖業(yè)后,到2018年,家庭年人均純收入達到了3600元.

1)求該貧困戶2016年到2018年家庭年人均純收入的年平均增長率;

2)若年平均增長率保持不變,2019年該貧困戶的家庭年人均純收入是否能達到4200元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】質地均勻的骰子,6個面上分別標有數(shù)字1,2,34,5,6.同時拋擲這樣的兩枚骰子,落地后朝上的兩個面上的數(shù)字之和為4的倍數(shù)的概率為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】校園內有一個由兩個全等的六邊形(邊長為)圍成的花壇,現(xiàn)將這個花壇在原有的基礎上擴建成如圖所示的一個菱形區(qū)域,并在新擴建的部分種上草坪,則擴建后菱形區(qū)域的周長為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明的家在某住宅樓AB的最頂層(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道這座建筑物的高度,于是在自家陽臺的A處測得建筑物CD的底部C的俯角是43°,頂部D的仰角是25°,他又測得兩建筑物之間的距離BC是28米,請你幫助小明求出建筑物CD的高度(精確到1米).

(參考數(shù)據(jù):sin25°≈0.42,cos25°≈0.91,tan25°≈0.47;sin43°≈0.68,cos43°≈0.73,tan43°≈0.93.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,過點A的直線PC交⊙OA,C兩點,AD平分∠PAB,射線AD交⊙O于點D,過點DDEPA于點E

1)求證:ED為⊙O的切線;

2)若AB10,ED2AE,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結論:①abc>0;②b<a+c;③4a+2b+c>0;④2c–3b<0;⑤a+b>n(an+b)(n≠1),其中正確的結論有( )

A. 2個 B. 3個 C. 4個 D. 5個

查看答案和解析>>

同步練習冊答案