【題目】如圖1(注:與圖2完全相同),二次函數(shù)y=x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0)兩點,與y軸交于點C.
(1)求該二次函數(shù)的解析式;
(2)設(shè)該拋物線的頂點為D,求△ACD的面積;
(3)若點P,Q同時從A點出發(fā),都以每秒1個單位長度的速度分別沿AB,AC邊運動,其中一點到達端點時,另一點也隨之停止運動,當(dāng)P,Q運動到t秒時,△APQ沿PQ所在的直線翻折,點A恰好落在拋物線上E點處,請直接判定此時四邊形APEQ的形狀,并求出E點坐標(biāo).
【答案】(1)y=x2﹣x﹣4;(2)4;(3)四邊形APEQ為菱形,E點坐標(biāo)為(﹣,﹣).理由詳見解析.
【解析】試題分析:(1)將A,B點坐標(biāo)代入函數(shù)y=x2+bx+c中,求得b、c,進而可求解析式;(2)由解析式先求得點D、C坐標(biāo),再根據(jù)S△ACD=S梯形AOMD﹣S△CDM﹣S△AOC,列式計算即可;(3)注意到P,Q運動速度相同,則△APQ運動時都為等腰三角形,又由A、E對稱,則AP=EP,AQ=EQ,易得四邊形四邊都相等,即菱形.利用菱形對邊平行且相等的性質(zhì)可用t表示E點坐標(biāo),又E在E函數(shù)上,所以代入即可求t,進而E可表示.
試題解析:(1)∵二次函數(shù)y=x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0),
∴,
解得: ,
∴y=x2﹣x﹣4;
(2)過點D作DM⊥y軸于點M,
∵y=x2﹣x﹣4=(x﹣1)2﹣,
∴點D(1,﹣)、點C(0,﹣4),
則S△ACD=S梯形AOMD﹣S△CDM﹣S△AOC=×(1+3)×﹣×(﹣4)×1﹣×3×4=4;
(3)四邊形APEQ為菱形,E點坐標(biāo)為(﹣,﹣).理由如下
如圖2,E點關(guān)于PQ與A點對稱,過點Q作,QF⊥AP于F,
∵AP=AQ=t,AP=EP,AQ=EQ
∴AP=AQ=QE=EP,
∴四邊形AQEP為菱形,
∵FQ∥OC,
∴,
∴
∴AF=t,FQ=t
∴Q(3﹣t,﹣t),
∵EQ=AP=t,
∴E(3﹣t﹣t,﹣t),
∵E在二次函數(shù)y=x2﹣x﹣4上,
∴﹣t=(3﹣t)2﹣(3﹣t)﹣4,
∴t=,或t=0(與A重合,舍去),
∴E(﹣,﹣).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下關(guān)于0的說法:①0的相反數(shù)與0的絕對值都是0;②0的倒數(shù)是0;③0減去一個數(shù),等于這個數(shù)的相反數(shù);④0除以任何有理數(shù)仍得0.其中說法正確的有( )個
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程
(1)求證:無論取任何實數(shù)時,方程恒有實數(shù)根;
(2)若關(guān)于的二次函數(shù)的圖象與軸兩個交點的橫坐標(biāo)均為整數(shù),求m的整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若xm÷x2n+1=x,則m與n的關(guān)系是( )
A. m=2n+1 B. m=﹣2n﹣1 C. m﹣2n=2 D. m﹣2n=﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為更好地開展“傳統(tǒng)文化進校園”活動,隨機抽查了部分學(xué)生,了解他們最喜愛的傳統(tǒng)文化項目類型(分為書法、圍棋、戲劇、國畫共4類),并將統(tǒng)計結(jié)果繪制成如圖不完整的頻數(shù)分布表及頻數(shù)分布直方圖.
最喜愛的傳統(tǒng)文化項目類型頻數(shù)分布表
根據(jù)以上信息完成下列問題:
(1)直接寫出頻數(shù)分布表中a的值;
(2)補全頻數(shù)分布直方圖;
(3)若全校共有學(xué)生1500名,估計該校最喜愛圍棋的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若b<0,則a+b,a,a﹣b的大小關(guān)系為( )
A.a+b>a>a﹣b
B.a﹣b>a>a+b
C.a>a﹣b>a+b
D.a﹣b>a+b>a
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列語句中,不是命題的為( 。
A. 對頂角相等 B. 同一平面內(nèi),兩條直線或者相交,或者平行
C. 作直線l D. 等式(x﹣y)2=x2+xy+y2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com