分析 (1)根據(jù)相似三角形的判定,由已知可證∠A=∠DCB,又因為∠ACB=∠BDC=90°,即證△ABC∽△CBD,
(2)根據(jù)勾股定理得到AB=5,根據(jù)三角形的面積公式得到CD=$\frac{AC•BC}{AB}=\frac{12}{5}$,然后根據(jù)勾股定理即可得到結(jié)論.
解答 (1)證明:∵CD⊥AB,
∴∠BDC=90°.
∴∠A+∠ACD=90°.
∵∠ACB=90°,
∴∠DCB+∠ACD=90°.
∴∠A=∠DCB.
又∵∠ACB=∠BDC=90°,
∴△ABC∽△CBD;
(2)解:∵∠ACB=90°,AC=4,BC=3,
∴AB=5,
∴CD=$\frac{AC•BC}{AB}=\frac{12}{5}$,
∵CD⊥AB,
∴BD=$\sqrt{B{C}^{2}-C{D}^{2}}$=$\sqrt{{3}^{2}-(\frac{12}{5})^{2}}$=$\frac{9}{5}$.
點評 本題考查了相似三角形的判定,解直角三角形,熟練掌握相似三角形的判定定理是解題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com