【題目】如圖,⊙O的直徑AB=12 cm,C為AB延長(zhǎng)線上一點(diǎn),CD與⊙O相切于點(diǎn)D,過(guò)點(diǎn)B作弦BE∥CD,連接DE.
(1)求證:點(diǎn)D為的中點(diǎn);
(2)若∠C=∠E,求四邊形BCDE的面積.
【答案】(1)見(jiàn)解析 (2)
【解析】
(1)連接OD,由CD與圓O切線,得到OD與CD垂直,根據(jù)BE與DC平行,得到OD與BE垂直,進(jìn)而得到D為弧BE的中點(diǎn)即可;
(2)連接OE,由BE與CD平行,得到一對(duì)同位角相等,再由已知角相等,等量代換得到一對(duì)內(nèi)錯(cuò)角相等,進(jìn)而得到BC與DE平行,即四邊形BCDE為平行四邊形,求出面積即可.
(1)證明:連接OD交BE于F,
∵CD與⊙O相切于點(diǎn)D,∴OD⊥DC,
∵BE∥CD,∴∠OFB=∠ODC=90°,
∴OD⊥BE,∴弧BD =弧DE,∴點(diǎn)D為弧BE的中點(diǎn).
(2)解:連接OE.∵BE∥CD,∴∠C=∠ABE.
∵∠C=∠BED,∴∠ABE=∠BED,∴DE∥CB,
∴四邊形BCDE是平行四邊形.
∵∠ABE=∠BED,∴∠AOE=∠BOD,∴弧AE=弧BD.
∵弧BD=弧DE,∴弧BD=弧DE=弧AE,
∴∠BOD=∠DOE=∠AOE=60°.∴△DOE為等邊三角形.
又∵OD⊥BE,∴DF=OF=OD=3,BF=EF.
在Rt△OEF中,EF===,BE=.
∴四邊形BCDE的面積===.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在電線桿上的C處引拉線CE、CF固定電線桿,拉線CE和地面成60°角,在離電線桿6米的B處安置測(cè)角儀,在A處測(cè)得電線桿上C處的仰角為30°,已知測(cè)角儀高AB為1.5米,求拉線CE的長(zhǎng)(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,M、N分別是AD、BC的中點(diǎn),P、Q分別是BM、DN的中點(diǎn).
(1)求證:△MBA≌△NDC;
(2)四邊形MPNQ是什么樣的特殊四邊形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將邊長(zhǎng)為8的正方形紙片ABCD沿著EF折疊,使點(diǎn)C落在AB邊的中點(diǎn)M處.點(diǎn)D落在點(diǎn)D'處,MD'與AD交于點(diǎn)G,則△AMG的內(nèi)切圓半徑的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A(1,a)是反比例函數(shù)的圖象上一點(diǎn),直線與反比例函數(shù)的圖象的交點(diǎn)為點(diǎn)B、D,且B(3,﹣1),求:
(1)求反比例函數(shù)的解析式;
(2)求點(diǎn)D坐標(biāo),并直接寫(xiě)出y1>y2時(shí)x的取值范圍;
(3)動(dòng)點(diǎn)P(x,0)在x軸的正半軸上運(yùn)動(dòng),當(dāng)線段PA與線段PB之差達(dá)到最大時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與交于點(diǎn),過(guò)點(diǎn)作軸的平行線,分別交兩條拋物線于點(diǎn),則以下結(jié)論:①無(wú)論取何值,的值總是正數(shù);②;③其中正確結(jié)論是( )
A. ①②B. ①③C. ②③D. 都正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),的坐標(biāo)分別為,,拋物線的頂點(diǎn)在折線上運(yùn)動(dòng).
(1)當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),拋物線與軸交點(diǎn)坐標(biāo)為.
①用含的代數(shù)式表示.
②求的取值范圍.
(2)當(dāng)拋物線與的邊有三個(gè)公共點(diǎn)時(shí),試求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙P的直徑,點(diǎn)在⊙P上,為⊙P外一點(diǎn),且∠ADC=90°,直線為⊙P的切線.
⑴ 試說(shuō)明:2∠B+∠DAB=180°
⑵ 若∠B=30°,AD=2,求⊙P的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,邊長(zhǎng)為2的等邊三角形AEF的頂點(diǎn)E、F分別在BC和CD上,下列結(jié)論:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.
其中正確的序號(hào)是 (把你認(rèn)為正確的都填上).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com