(2004•福州)如圖所示,拋物線y=-(x-m)2的頂點為A,直線與y軸的交點為B,其中m>0.
(1)寫出拋物線對稱軸及頂點A的坐標;(用含有m的代數(shù)式表示)
(2)證明點A在直線l上,并求∠OAB的度數(shù);
(3)動點Q在拋物線的對稱軸上,在對稱軸左側(cè)的拋物線上是否存在點P,使以P、Q、A為頂點的三角形與△OAB全等?若存在,求出m的值,并寫出所有符合上述條件的P點坐標;若不存在,說明理由.

【答案】分析:(1)根據(jù)頂點式拋物線解析式即可得出拋物線的對稱軸為x=m,頂點坐標A(m,0);
(2)將A點的坐標代入直線l的解析式中即可判定出點A是否在直線l上.
根據(jù)題意不難得出OA=m,OB=m,據(jù)此可求出∠OAB的正切值,進而可求出∠OAB的度數(shù);
(3)本題要分四種情況進行討論:
①當∠AQP=90°,∠QAP=60°,m=3,P點的坐標為(3-3,-3);
②當∠AQP=90°,∠QPA=60°,m=,P點的坐標為(0,-3);
③當∠APQ=90°,∠QAP=60°,m=,P點的坐標為(,-);
④當∠APQ=90°,∠AQP=60°,m=,因此P點的坐標為(-,-).
解答:解:(1)對稱軸為直線x=m,頂點A(m,0);

(2)把x=m代入函數(shù)y=x-m,
得y=m-m=0
∴點A(m,0)在直線l上.
當x=0時,y=-m
∴B(0,-m),tan∠OAB=
∴∠OAB=60°;

(3)①當∠AQP=90°,∠QAP=60°,AQ=OA=m,PQ=OB=m
,因此P點坐標為(m-m,-m),
將P點的坐標代入拋物線的解析式可得m=,
因此P點的坐標為(,-).
②當∠AQP=90°,∠QPA=60°,此時P,B重合,
因此P點坐標為(0,-m),
代入拋物線解析式得m=,因此P點的坐標為(0,-3).
③當∠APQ=90°,∠QAP=60°,PA=m,過P作PC⊥AQ于C,
那么PC=AP•sin60°=m,AC=m,
因此P點的坐標為(m-m,-m).
代入拋物線得m=,因此P點的坐標為(,-);
④當∠APQ=90°,∠AQP=60°,PA=OB=m,
過P作PD⊥AQ于D,
那么PD=AP•sin30°=m,AD=m,
因此P點的坐標為(m-m,-m),
代入拋物線得m=,
因此P點的坐標為(,-1).
點評:本題考查了二次函數(shù)的性質(zhì)及全等三角形的判定等知識點,(3)在不確定全等三角形的對應角和對應邊的情況下要分類討論.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2004•福州)如圖所示,l1和l2分別表示一種白熾燈和一種節(jié)能燈的費用y(元)與照明時間x(小時)的函數(shù)關(guān)系圖象,假設兩種燈的使用壽命都是2000小時,照明效果一樣.(費用=燈的售價+電費)
(1)根據(jù)圖象分別求出l1,l2的函數(shù)關(guān)系式;
(2)當照明時間為多少時,兩種燈的費用相等?
(3)小亮房間計劃照明2500小時,他買了一個白熾燈和一個節(jié)能燈,請你幫他設計最省錢的用燈方法.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年浙江省杭州市蕭山區(qū)中考模擬數(shù)學試卷(進化一中 薛鋒章等) (解析版) 題型:解答題

(2004•福州)如圖所示,拋物線y=-(x-m)2的頂點為A,直線與y軸的交點為B,其中m>0.
(1)寫出拋物線對稱軸及頂點A的坐標;(用含有m的代數(shù)式表示)
(2)證明點A在直線l上,并求∠OAB的度數(shù);
(3)動點Q在拋物線的對稱軸上,在對稱軸左側(cè)的拋物線上是否存在點P,使以P、Q、A為頂點的三角形與△OAB全等?若存在,求出m的值,并寫出所有符合上述條件的P點坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年陜西省中考數(shù)學預測試卷(二)(解析版) 題型:解答題

(2004•福州)如圖所示,l1和l2分別表示一種白熾燈和一種節(jié)能燈的費用y(元)與照明時間x(小時)的函數(shù)關(guān)系圖象,假設兩種燈的使用壽命都是2000小時,照明效果一樣.(費用=燈的售價+電費)
(1)根據(jù)圖象分別求出l1,l2的函數(shù)關(guān)系式;
(2)當照明時間為多少時,兩種燈的費用相等?
(3)小亮房間計劃照明2500小時,他買了一個白熾燈和一個節(jié)能燈,請你幫他設計最省錢的用燈方法.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年福建省福州市中考數(shù)學試卷(解析版) 題型:解答題

(2004•福州)如圖所示,拋物線y=-(x-m)2的頂點為A,直線與y軸的交點為B,其中m>0.
(1)寫出拋物線對稱軸及頂點A的坐標;(用含有m的代數(shù)式表示)
(2)證明點A在直線l上,并求∠OAB的度數(shù);
(3)動點Q在拋物線的對稱軸上,在對稱軸左側(cè)的拋物線上是否存在點P,使以P、Q、A為頂點的三角形與△OAB全等?若存在,求出m的值,并寫出所有符合上述條件的P點坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案