分析 根據(jù)在△ABC中,已知AD是BC邊上的高,DC=1,BD=2,tanB=cos∠DAC,可以得到∠ADB=∠ADC=90°,AD的長,從而可以得到AB的長,本題得以解決.
解答 解:∵在△ABC中,已知AD是BC邊上的高,DC=1,BD=2,tanB=cos∠DAC,
∴∠ADB=∠ADC=90°,
∴$\frac{AD}{BD}=\frac{AD}{AC}$,AC=$\sqrt{A{D}^{2}+C{D}^{2}}$,
∴$\frac{AD}{2}=\frac{AD}{\sqrt{A{D}^{2}+{1}^{2}}}$,
解得,AD=$\sqrt{3}$,
∴AB=$\sqrt{A{D}^{2}+B{D}^{2}}=\sqrt{(\sqrt{3})^{2}+{2}^{2}}=\sqrt{7}$,
故答案為:$\sqrt{7}$.
點(diǎn)評 本題考查解直角三角形,解題的關(guān)鍵是求出各邊的長,找出所求問題需要的條件.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com