如圖,正比例函數(shù)的圖象與反比例函數(shù)在第一象限的圖象交于點,過點作軸的垂線,垂足為,已知的面積為1.(1)求反比例函數(shù)的解析式;(2)如果為反比例函數(shù)在第一象限圖象上的點(點與點不重合),且點的橫坐標為1,在軸上求一點,使最小.           

     

        

                                     

 

【答案】

解:(1) 設(shè)點的坐標為(,),則.∴.

,∴.∴.∴反比例函數(shù)的解析式為.

(2) 由  得 ∴為(,).

設(shè)點關(guān)于軸的對稱點為,則點的坐標為().

令直線的解析式為.∵為(,)∴

的解析式為,當時,.∴點為(,).

【解析】根據(jù)反比例函數(shù)圖象上的點的橫縱坐標的乘積為函數(shù)的系數(shù)和△OAM的面積為1可得k=2,即反比例函數(shù)的解析式為

.要使PA+PB最小,需作出A點關(guān)于x軸的對稱點C,連接BC,交x軸于點P,P為所求點.A點關(guān)于x軸的對稱點C(2,-1),而B為(1,2),故BC的解析式為y=-3x+5,當y=0時,x=,即可得出答案.

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正比例函數(shù)y=
1
3
x
的圖象與反比例函數(shù)y=
k
x
的圖象交于A、B兩點,點A的橫坐標為6.
(1)求反比例函數(shù)的表達式;
(2)點P為此反比例函數(shù)圖象上一點,且點P的縱坐標為4,求△AOP的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,正比例函數(shù)y=kx(k≠0)的圖象與反比例函數(shù)y=
m
x
(m≠0)
的圖象交于A、B兩點,作AC⊥Ox軸于C,△AOC的面積是24,且cos∠AOC=
4
5
,點N的坐標是(-5,0),求:
(1)反比例函數(shù)與正比例函數(shù)的解析式;
(2)求△ANB的面積;
(3)根據(jù)圖象,直接寫出關(guān)于x的不等式kx>
m
x
的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,正比例函數(shù)的圖象經(jīng)過點P和點Q(-m,m+3),求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,正比例函數(shù)數(shù)學公式與二次函數(shù)y=-x2+2x+c的圖象都經(jīng)過點A(2,m).
(1)求這個二次函數(shù)的解析式;
(2)求這個二次函數(shù)圖象頂點P的坐標和對稱軸;
(3)若二次函數(shù)圖象的對稱軸與正比例函數(shù)的圖象相交于點B,與x軸相交于點C,點Q是x軸的正半軸上的一點,如果△OBC與△OAQ相似,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年上海市金山區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

如圖,正比例函數(shù)與二次函數(shù)y=-x2+2x+c的圖象都經(jīng)過點A(2,m).
(1)求這個二次函數(shù)的解析式;
(2)求這個二次函數(shù)圖象頂點P的坐標和對稱軸;
(3)若二次函數(shù)圖象的對稱軸與正比例函數(shù)的圖象相交于點B,與x軸相交于點C,點Q是x軸的正半軸上的一點,如果△OBC與△OAQ相似,求點Q的坐標.

查看答案和解析>>

同步練習冊答案