【題目】如圖,已知拋物線經(jīng)過(guò)原點(diǎn)O,頂點(diǎn)為A(1,1),且與直線y=x﹣2交于B,C兩點(diǎn).
⑴求拋物線的解析式及點(diǎn)C的坐標(biāo);
⑵求證:△ABC是直角三角形;
⑶若點(diǎn)N為x軸上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)N作MN⊥x軸與拋物線交于點(diǎn)M,則是否存在以O(shè),M,N為頂點(diǎn)的三角形與△ABC相似?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)y=﹣x2+2x;C(-1,-3);(2)證明過(guò)程略;(3)(,0)或(,0)或(﹣1,0)或(5,0).
【解析】
(1)可設(shè)頂點(diǎn)式,把原點(diǎn)坐標(biāo)代入可求得拋物線解析式,聯(lián)立直線與拋物線解析式,可求得C點(diǎn)坐標(biāo);
(2)分別過(guò)A、C兩點(diǎn)作x軸的垂線,交x軸于點(diǎn)D、E兩點(diǎn),結(jié)合A、B、C三點(diǎn)的坐標(biāo)可求得∠ABO=∠CBO=45°,可證得結(jié)論;
(3)設(shè)出N點(diǎn)坐標(biāo),可表示出M點(diǎn)坐標(biāo),從而可表示出MN、ON的長(zhǎng)度,當(dāng)△MON和△ABC相似時(shí),利用三角形相似的性質(zhì)可得或,可求得N點(diǎn)的坐標(biāo).
解:(1)∵頂點(diǎn)坐標(biāo)為(1,1),
∴設(shè)拋物線解析式為y=a(x-1)2+1,
又拋物線過(guò)原點(diǎn),
∴0=a(0-1)2+1,解得a=-1,
∴拋物線解析式為y=-(x-1)2+1,
即y=-x2+2x,
聯(lián)立拋物線和直線解析式可得 ,
解得或 ,
∴B(2,0),C(-1,-3);
(2)如圖,分別過(guò)A、C兩點(diǎn)作x軸的垂線,交x軸于點(diǎn)D、E兩點(diǎn),
則AD=OD=BD=1,BE=OB+OE=2+1=3,EC=3,
∴∠ABO=∠CBO=45°,即∠ABC=90°,
∴△ABC是直角三角形;
(3)假設(shè)存在滿足條件的點(diǎn)N,設(shè)N(x,0),則M(x,-x2+2x),
∴ON=|x|,MN=|-x2+2x|,
由(2)在Rt△ABD和Rt△CEB中,可分別求得AB= ,BC=3,
∵M(jìn)N⊥x軸于點(diǎn)N
∴∠ABC=∠MNO=90°,
∴當(dāng)△ABC和△MNO相似時(shí)有或,
當(dāng)時(shí),則有 ,即|x||-x+2|=|x|,
∵當(dāng)x=0時(shí)M、O、N不能構(gòu)成三角形,
∴x≠0,
∴|-x+2|=,即-x+2=± ,解得x= 或x= ,
此時(shí)N點(diǎn)坐標(biāo)為(,0)或(,0);
②當(dāng)時(shí),則有,即|x||-x+2|=3|x|,
∴|-x+2|=3,即-x+2=±3,解得x=5或x=-1,
此時(shí)N點(diǎn)坐標(biāo)為(-1,0)或(5,0),
綜上可知存在滿足條件的N點(diǎn),其坐標(biāo)為( ,0)或( ,0)或(-1,0)或(5,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(﹣1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,頂點(diǎn)為D,下列結(jié)論正確的是( 。
A. abc<0
B. 3a+c=0
C. 4a﹣2b+c<0
D. 方程ax2+bx+c=﹣2(a≠0)有兩個(gè)不相等的實(shí)數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB⊥BD,CD⊥BD點(diǎn)P是BD上一點(diǎn).
(1)若∠APC=90°.求證:△PAB∽△CPD;
(2)若△PAB與△PCD相似,AB=9,BP=6,CD=4.求PD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一只箱子里共有3個(gè)球,其中2個(gè)白球,1個(gè)紅球,它們除顏色外均相同。
(1)從箱子中任意摸出一個(gè)球是白球的概率是多少?
(2)從箱子中任意摸出一個(gè)球,不將它放回箱子,攪勻后再摸出一個(gè)球,求兩次摸出球的都是白球的概率,并畫(huà)出樹(shù)狀圖。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷.據(jù)市場(chǎng)調(diào)查,銷售單價(jià)是100元時(shí),每天的銷售量是50件,而銷售單價(jià)每降低1元,每天就可多售出5件,但要求銷售單價(jià)不得低于成本.
(1)求出每天的銷售利潤(rùn)y(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)求出銷售單價(jià)為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?
(3)如果該企業(yè)要使每天的銷售利潤(rùn)不低于4000元,且每天的總成本不超過(guò)7000元,那么銷售單價(jià)應(yīng)控制在什么范圍內(nèi)?(每天的總成本=每件的成本×每天的銷售量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,,點(diǎn)是邊上一動(dòng)點(diǎn)(不與點(diǎn)重合),過(guò)點(diǎn)作交邊于點(diǎn),將沿直線翻折,點(diǎn)落在射線上的點(diǎn)處,當(dāng)為直角三角形時(shí),求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交AC邊于點(diǎn)D,過(guò)點(diǎn)C作CF∥AB,與過(guò)點(diǎn)B的切線交于點(diǎn)F,連接BD.
(1)求證:BD=BF;
(2)若AB=10,CD=4,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,E,F(xiàn)分別在邊AD,CD上,AF,BE相交于點(diǎn)G,若AE=3ED,DF=CF,則的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABO的頂點(diǎn)A是反比例函數(shù)y=與一次函數(shù)y=﹣x﹣(k+1)的圖象在第二象限的交點(diǎn),AB⊥x軸于B,且S△ABO=.
(1)直接寫(xiě)出這兩個(gè)函數(shù)的關(guān)系式;
(2)求△AOC的面積;
(3)根據(jù)圖象直接寫(xiě)出:當(dāng)x為何值時(shí),反比例函數(shù)的值小于一次函數(shù)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com