(2002•福州)已知:圖A、圖B分別是6×6正方形網(wǎng)格上的兩個軸對稱圖形(陰影部分),其面積分別為SA、SB(網(wǎng)格中最小的正方形面積為一個平方單位),請觀察圖形并解答下列問題.
(1)填空,SA:SB的值是______;
(2)請在圖C的網(wǎng)格上畫出一個面積為8個平方單位的中心對稱圖形.

【答案】分析:(1)從網(wǎng)格中數(shù)小正方形的個數(shù),進行比較,從圖可知,A圖中有14個小正方形和8個正方形的一半,即有18個正方形.B圖中有16個小正方形,和12個正方形的一半,即共有22個正方形.由此得出面積比.
(2)根據(jù)中心對稱圖形的性質(zhì)作圖.
解答:解:(1)從圖可知,A圖中有14個小正方形和8個正方形的一半,即有22個正方形.
B圖中有16個小正方形,和12個正方形的一半,即共有22個正方形.
由此得出面積比SA:SB=18:22=9:11.
(2)
點評:本題主要考查網(wǎng)格的實際應用,學生要會利用網(wǎng)格計算面積.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

(2002•福州)已知:二次函數(shù)y=x2+bx+c(b、c為常數(shù)).
(1)若二次函數(shù)的圖象經(jīng)過A(-2,-3)和B(2,5)兩點,求此二次函數(shù)的解析式;
(2)若(1)中的二次函數(shù)的圖象過點P(m+1,n2+4n),且m≠n,求m+n的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2002•福州)已知:矩形ABCD在平面直角坐標系中,頂點A、B、D的坐標分別為A(0,0),B(m,0),D(0,4),其中m≠0.
(1)寫出頂點C的坐標和矩形ABCD的中心P點的坐標(用含m的代數(shù)式表示);
(2)若一次函數(shù)y=kx-1的圖象J把矩形ABCD分成面積相等的兩部分,求此一次函數(shù)的解析式(用含m的代數(shù)式表示);
(3)在(2)的前提下,l又與半徑為1的⊙M相切,且點M(0,1),求此時矩形ABCD的中心P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年福建省福州市中考數(shù)學試卷(解析版) 題型:解答題

(2002•福州)已知:矩形ABCD在平面直角坐標系中,頂點A、B、D的坐標分別為A(0,0),B(m,0),D(0,4),其中m≠0.
(1)寫出頂點C的坐標和矩形ABCD的中心P點的坐標(用含m的代數(shù)式表示);
(2)若一次函數(shù)y=kx-1的圖象J把矩形ABCD分成面積相等的兩部分,求此一次函數(shù)的解析式(用含m的代數(shù)式表示);
(3)在(2)的前提下,l又與半徑為1的⊙M相切,且點M(0,1),求此時矩形ABCD的中心P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年福建省福州市中考數(shù)學試卷(解析版) 題型:解答題

(2002•福州)已知:二次函數(shù)y=x2+bx+c(b、c為常數(shù)).
(1)若二次函數(shù)的圖象經(jīng)過A(-2,-3)和B(2,5)兩點,求此二次函數(shù)的解析式;
(2)若(1)中的二次函數(shù)的圖象過點P(m+1,n2+4n),且m≠n,求m+n的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《圖形的相似》(03)(解析版) 題型:填空題

(2002•福州)已知線段a=4 cm,b=9 cm,則線段a,b的比例中項為    cm.

查看答案和解析>>

同步練習冊答案