已知,M是等邊△ABC邊BC上的點.
(1)如圖1,過點M作MN∥AC且交于點N,求證:BM=BN;
(2)如圖2,連接AM,過點M作∠AMH=60°,MH與∠ACB的鄰補角的平分線交與點H,過H作HD⊥BC于點D.求證:MA=MH.
分析:(1)由條件可以得出∠A=∠B=∠C=60°,再根據(jù)平行線的性質(zhì)就可以得出∠BMN=∠BNM=60°,得出△BNM是等邊三角形就可以得出結(jié)論;
(2)過點M作MN∥AC交AB于N,由條件可以得出∠HMC=∠BAM,∠ANM=∠MCH和AN=BC就可以得出△ANM≌△MCH,就可以得出結(jié)論.
解答:解:(1)∵△ABC是等邊三角形,
∴∠A=∠B=∠C=60°,AB=BC=AC.
∵MN∥AC,
∴∠BMN=∠C=60°,∠BNM=∠A=60°.
∴∠BMN=∠BNM=∠B=60°,
∴△BNM是等邊三角形,
∴BM=BN;

(2)過點M作MN∥AC交AB于N,
∴BM=BN,∠ANM=120°.
∵∠AMH=60°,
∴∠AMB+∠HMC=120°.
∵∠B=60°,
∴∠AMB+∠BAM=120°.
∴∠HMC=∠BAM.
∵∠ACB=60°,
∴∠ACD=120°.
∵CH平分∠ACD,
∴∠ACH=
1
2
∠ACD=60°,
∴∠MCH=120°,
∴∠ANM=∠MCH.
∵AB=BC,
∴AB-BN=BC-BM,
∴AN=BC.
在△ANM和△MCH中,
∠BAM=∠HMC
AN=BC
∠ANM=∠MCH
,
∴△ANM≌△MCH(ASA),
∴MA=MH.
點評:本題考查了等邊三角形的性質(zhì)的運用,平行線的性質(zhì)的運用,角平分線的性質(zhì)的運用,全等時間性的判定與性質(zhì)的運用,解答時證明三角形全等是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖(1),已知圓O是等邊△ABC的外接圓,過O點作MN∥BC分別交AB、AC于M、N,且MN=a.另一個與△ABC全等的等邊△DEF的頂點D在MN上移動(不與點M、N重合),并始終保持EF∥BC,DF交AB于點P,DE交AC于點Q.
(1)試判斷四邊形APDQ的形狀,并進行證明;
(2)設(shè)DM為x,四邊形APDQ的面積為y,試探究y與x的函數(shù)關(guān)系式;四邊形APDQ的面積能取到最大值嗎?如果能,請求出它的最大值,并確定此時D點的位置.
(3)如圖(2),當D點和圓心O重合時,請判斷四邊形APDQ的形狀,并說精英家教網(wǎng)明理由;你能發(fā)現(xiàn)四邊形APDQ的面積與△ABC的面積有何關(guān)系嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

19、已知,△ABC是等邊三角形,將一塊含30°角的直角三角板DEF如圖放置,讓三角板在BC所在的直線l上向右平移.當點E與點B重合時,點A恰好落在三角板的斜邊DF上.
問:在三角板平移過程中,圖中是否存在與線段EB始終相等的線段(假定AB、AC與三角板斜邊的交點為G、H)?如果存在,請指出這條線段,并證明;如果不存在,請說明理由.
(說明:結(jié)論中不得含有圖中未標識的字母)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、已知,△ABC是等邊三角形,將一塊含有30°角的直角三角板DEF如圖放置,讓三角板在BC所在的直線上向右平移,如圖1,當點E與點B重合時,點A恰好落在三角形的斜邊DF上.
(1)利用圖1證明:EF=2BC;
(2)在三角板的平移過程中,在圖2中線段EB=AH是否始終成立(假定AB,AC與三角板斜邊的交點為G、H)?如果成立,請證明;如果不成立,請說明理由?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•長寧區(qū)二模)已知點G是等邊△ABC的中心,設(shè)
AB
=
a
AC
=
b
,用向量
a
b
表示
AG
=
1
3
a
+
1
3
b
1
3
a
+
1
3
b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:△ABC是等邊三角形,△BDC是等腰三角形,其中∠BDC=120°,過點D作∠EDF=60°,分別交AB于E,交AC于F,連接EF.
(1)若BE=CF,求證:①△DEF是等邊三角形;②BE+CF=EF.
(2)若BE≠CF,即E、F分別是線段AB,AC上任意一點,BE+CF=EF還會成立嗎?請說明理由.

查看答案和解析>>

同步練習冊答案