11.閱讀下面材料:
小偉遇到這樣一個問題:如圖1,在正三角形ABC內(nèi)有一點P,且PA=3,PB=4,PC=5,求∠APB的度數(shù);
小偉是這樣思考的:如圖2,利用旋轉(zhuǎn)和全等的知識構(gòu)造△AP′C,連接PP′,得到兩個特殊的三角形,從而將問題解決.

(1)請你回答:圖1中∠APB的度數(shù)等于150°.(直接寫答案)
參考小偉同學(xué)思考問題的方法,解決下列問題:
如圖3,在正方形ABCD內(nèi)有一點P,且PA=2$\sqrt{2}$,PB=1,PD=$\sqrt{17}$.
(2)求∠APB的度數(shù);
(3)求正方形的邊長.

分析 (1)把△APB繞點A逆時針旋轉(zhuǎn)60°得到△ACP′,由旋轉(zhuǎn)的性質(zhì)可得P′A=PA,P′C=PB,∠PAP′=60°,證出△APP′是等邊三角形,由等邊三角形的性質(zhì)求出PP′=PA=3,∠AP′P=60°,再由勾股定理逆定理求出∠PP′C=90°,求出∠AP′C,即為∠APB的度數(shù);
(2)把△APB繞點A逆時針旋轉(zhuǎn)90°得到△ADP′,由旋轉(zhuǎn)的性質(zhì)可得P′A=PA,P′D=PB,∠PAP′=90°,證出△APP′是等腰直角三角形,由等腰直角三角形的性質(zhì)求出PP′,∠AP′P=45°,再利用勾股定理逆定理求出∠PP′D=90°,然后求出∠AP′D,即為∠APB的度數(shù);
(3)求出點P′、P、B三點共線,過點A作AE⊥PP′于E,根據(jù)等腰直角三角形的性質(zhì)求出AE=PE=$\frac{1}{2}$PP′,然后求出BE,在Rt△ABE中,利用勾股定理求出AB即可.

解答 解:(1)如圖2,把△APB繞點A逆時針旋轉(zhuǎn)60°得到△ACP′,
由旋轉(zhuǎn)的性質(zhì),P′A=PA=3,P′D=PB=4,∠PAP′=60°,∠APB=∠AP′C,
∴△APP′是等邊三角形,
∴PP′=PA=3,∠AP′P=60°,
∵PP′2+P′C2=32+42=25,PC2=52=25,
∴PP′2+P′C2=PC2
∴∠PP′C=90°,
∴∠AP′C=∠AP′P+∠PP′C=60°+90°=150°;
故∠APB=∠AP′C=150°;
故答案為:150°.
(2)如圖3,把△APB繞點A逆時針旋轉(zhuǎn)90°得到△ADP′,
由旋轉(zhuǎn)的性質(zhì),P′A=PA=2$\sqrt{2}$,P′D=PB=1,∠PAP′=90°,
∴△APP′是等腰直角三角形,
∴PP′=$\sqrt{2}$PA=4,∠AP′P=45°,
∵PP′2+P′D2=42+12=17,PD2=($\sqrt{17}$)2=17,
∴PP′2+P′D2=PD2,
∴∠PP′D=90°,
∴∠AP′D=∠AP′P+∠PP′D=45°+90°=135°,
故∠APB=∠AP′D=135°,
(3)∵∠APB+∠APP′=135°+45°=180°,
∴點P′、P、B三點共線,
過點A作AE⊥PP′于E,
則AE=PE=$\frac{1}{2}$PP′=$\frac{1}{2}$×4=2,
∴BE=PE+PB=2+1=3,
在Rt△ABE中,AB=$\sqrt{A{E}^{2}+B{E}^{2}}$=$\sqrt{{2}^{2}+{3}^{2}}$=$\sqrt{13}$.

點評 本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),正方形的性質(zhì),勾股定理以及勾股定理逆定理的應(yīng)用,全等三角形的判定與性質(zhì),求正方形的邊長有一定的難度,作輔助線構(gòu)造出直角三角形是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖1,在平面直角坐標(biāo)系中,點M的坐標(biāo)為(3,0),以點M為圓心,5為半徑的圓與坐標(biāo)軸分別交于點A、B、C、D.
(1)△AOD與△COB相似嗎?為什么?
(2)如圖2,弦DE交x軸于點P,且BP:DP=3:2,求tan∠EDA;
(3)如圖3,過點D作⊙M的切線,交x軸于點Q.點G是⊙M上的動點,問比值$\frac{GO}{GQ}$是否變化?若不變,請求出比值;若變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.計算:
(1)$\frac{{a}^{2}-6a+9}{4-^{2}}÷\frac{3-a}{2+b}•\frac{{a}^{2}}{3a-9}$
(2)($\frac{x-2}{x+2}+\frac{4x}{{x}^{2}-4}$)$÷\frac{1}{{x}^{2}-4}$,其中x=-3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

19.下列命題中,是真命題的是( 。
A.角是軸對稱圖形,角平分線是它的對稱軸
B.線段是軸對稱圖形,并且只有一條對稱軸
C.三角形的一個外角等于它任意兩個內(nèi)角的和
D.在直角三角形中,如果有一個銳角等于30°,那么它所對的直角邊等于斜邊的一半

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.已知a,b,c都是有理數(shù),$\sqrt{a}$$+\sqrt$$+\sqrt{c}$也是有理數(shù),求證:$\sqrt{a}$,$\sqrt$,$\sqrt{c}$都是有理數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,一次函數(shù)y=kx+b的圖象與兩坐標(biāo)軸的正半軸相交,則k,b的取值范圍是( 。
A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.計算:
(1)(2+$\sqrt{3}$)(2-$\sqrt{3}$)
(2)($\sqrt{24}$+3$\sqrt{\frac{1}{6}}$)÷$\sqrt{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.若拋物線y=ax2+c與x軸交于點A(m,0),B(n,0),與y軸交于點C(0,c),則稱△ABC為“拋物三角形”.特別地,當(dāng)mnc<0時,稱△ABC為“倒拋物三角形”時,a、c應(yīng)分別滿足條件a<0,c>0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.一天,老師拿來一張圖(如圖),對同學(xué)們說:我們班級的小王與小李住在一條大街的兩頭,相距兩千米,在他們兩家之間,中間恰好是一家書店,現(xiàn)在請同學(xué)們回答下列問題:
(1)小王與小李誰先離開家?
(2)圖中的水平線段表示什么?
(3)小王到哪兒去?他在路途中行走了多長時間?小李到哪兒去?他在路途中行走了多長時間?

查看答案和解析>>

同步練習(xí)冊答案