(8分)如圖,在長(zhǎng)方形ABCD中,將△ABC沿AC對(duì)折至△AEC位置,CE與AD交于點(diǎn)F.

(1)試說明:AF=FC;
(2)如果AB=3,BC=4,求AF的長(zhǎng).
(1)詳見解析;(2).

試題分析:(1)觀察圖形,可得AE=DC,又∵∠FEA=∠DFC,∠AEF=∠CDF,由全等三角形判定方法證△AEF≌△CDF,即得EF=DF,從而得到AF=FC.(2)在Rt△CDF中應(yīng)用勾股定理即可得.
試題解析:(1)證明:由矩形性質(zhì)可知,AE=AB=DC,
根據(jù)對(duì)頂角相等得,∠EFA=∠DFC,
而∠E=∠D=90°,
∴由AAS可得,△AEF≌△CDF!郃F=FC.
(2)設(shè)FA=x,則FC=x,F(xiàn)D= ,
在Rt△CDF中,CF2=CD2+DF2,即,解得x=.
考點(diǎn): 1.翻折變換(折疊問題);2.矩形的性質(zhì);3.全等三角形的判定與性質(zhì);4勾股定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

課本中把長(zhǎng)與寬之比為的矩形紙片稱為標(biāo)準(zhǔn)紙.請(qǐng)解決下列問題:
(1)將一張標(biāo)準(zhǔn)紙ABCD(AB<BC)對(duì)開,如圖1所示,所得的矩形紙片ABEF是標(biāo)準(zhǔn)紙.請(qǐng)給予證明;

(2)在一次綜合實(shí)踐課上,小明嘗試著將矩形紙片ABCD(AB<BC)進(jìn)行如下操作:
第一步:沿過A點(diǎn)的直線折疊,使B點(diǎn)落在AD邊上點(diǎn)F處,折痕為AE(如圖2甲);
第二步:沿過D點(diǎn)的直線折疊,使C點(diǎn)落在AD邊上點(diǎn)N處,折痕為DG(如圖2乙) .此時(shí)E點(diǎn)恰好落在AE邊上的點(diǎn)M處;
第三步:沿直線DM折疊(如圖2丙),此時(shí)點(diǎn)G恰好與N點(diǎn)重合.

請(qǐng)你研究,矩形紙片ABCD是否是一張標(biāo)準(zhǔn)紙?請(qǐng)說明理由.
(3)不難發(fā)現(xiàn),將一張標(biāo)準(zhǔn)紙如圖3一次又一次對(duì)開后,所得的矩形紙片都是標(biāo)準(zhǔn)紙.現(xiàn)有一張標(biāo)準(zhǔn)紙ABCD,AB=1,BC=,問第5次對(duì)開后所得標(biāo)準(zhǔn)紙的周長(zhǎng)是多少?探索并直接寫出第2002次對(duì)開后所得標(biāo)準(zhǔn)紙的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

動(dòng)手操作:在一張長(zhǎng)12cm、寬5cm的矩形紙片內(nèi),要折出一個(gè)菱形.小穎同學(xué)按照取兩組對(duì)邊中點(diǎn)的方法折出菱形EFGH(見方案一),小明同學(xué)沿矩形的對(duì)角線AC折出∠CAE=∠CAD,∠ACF=∠ACB的方法得到菱形AECF(見方案二).

(1)你能說出小穎、小明所折出的菱形的理由嗎?
(2)請(qǐng)你通過計(jì)算,比較小穎和小明同學(xué)的折法中,哪種菱形面積較大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在□ABCD中,∠ABC的平分線交AD于點(diǎn)E,且AE=DE=1,則□ABCD的周長(zhǎng)等于      .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

等腰梯形兩底長(zhǎng)分別為5cm和11cm,一個(gè)底角為60°,則腰長(zhǎng)為_   __.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在矩形ABCD中,點(diǎn)E是邊CD的中點(diǎn),將△ADE沿AE折疊后得到△AFE,且點(diǎn)F在矩形ABCD內(nèi)部.將AF延長(zhǎng)交邊BC于點(diǎn)G.若,則     (用含k的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀下列材料:
如圖1,在梯形ABCD中,AD∥BC,點(diǎn)M、N分別在邊AB、BC上,且MN∥AD,記AD=a,BC=b,若,則有結(jié)論:

請(qǐng)根據(jù)以上結(jié)論,解答下列問題:

如圖2,3,BE、CF是△ABC的兩條角平分線,過EF上一點(diǎn)P分別作△ABC三邊的垂線段PP1、PP2、PP3,交BC于點(diǎn)P1,交AB于點(diǎn)P2,交AC于點(diǎn)P3
(1)若點(diǎn)P為線段EF的中點(diǎn),求證:PP1=PP2+PP3;
(2)若點(diǎn)P在線段EF上任意位置時(shí),試探究PP1、PP2、PP3的數(shù)量關(guān)系,給出證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,等腰梯形ABCD中,AD∥BC,DE⊥BC,BD⊥DC,垂足分別為E,D,DE=3,BD=5,則腰長(zhǎng)AB=     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在Rt△ABC中,∠B=90°,AB=3,BC=4,點(diǎn)D在BC上,以AC為對(duì)角線的所有ADCE中,DE最小的值是
A.2B.3C.4D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案