已知,如圖,AO⊥BC,DO⊥OE.
(1)在下面的橫線上填上適當(dāng)?shù)慕牵?br />∠DOE=∠
 
+∠
 
;∠BOE=∠
 
-∠
 
;
(2)不添加其它條件情況下,請盡可能多地寫出圖中有關(guān)角的等量關(guān)系(至少4個).
(3)如果∠COE=35°,求∠AOD的度數(shù).
考點:余角和補角
專題:
分析:(1)根據(jù)余角的意義直接填空即可;
(2)利用等角的余角相等,找出相等的角和直角的意義解答即可;
(3)由等角的余角相等直接求出∠AOD的度數(shù)
解答:解:(1)∠DOA+∠AOE,∠BOC-∠COE.
(2)∠AOB=∠AOC,∠DOE=∠AOB,∠DOE=∠AOC,∠BOD=∠AOE,∠DOA=∠EOC.
(3)∠AOD=∠COE=35°.
點評:此題考查余角的意義,以及等角的余角相等等知識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,把矩形OABC放在直角坐標(biāo)系中,OC在x軸上,OA在y軸上,且OC=2,OA=4,把矩形OABC繞著原點順時針旋轉(zhuǎn)90°得到矩形ODEF,則E的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計算:-22×sin45°+|-
8
|-(π-1)0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AC為⊙O的直徑,AC=4,B、D分別在AC兩側(cè)的圓上,∠BAD=60°,BD與AC的交點為E.
(1)求∠BOD的度數(shù)及點O到BD的距離;
(2)若DE=2BE,求cos∠OED的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD,點E是BC上一點,點F是CD延長線上一點,連接EF,若BE=DF,點P是EF的中點.
(1)求證:DP平分∠ADC;
(2)若∠CEF=75°,CF=1+
3
,求△AEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

問題背景:
如圖1,在Rt△ABC中,∠C=90°,∠ABC=30°,點D是射線CB上任意一點,△ADE是等邊三角形,且點E在∠ACB的內(nèi)部,連接BE.試探究線段BE與DE之間的數(shù)量關(guān)系.
探究結(jié)論:
先將圖形特殊化,得出猜想,再對一般情況進行分析并加以證明.
(1)當(dāng)點D與點C重合時(如圖2),請你補全圖形.由∠BAC的度數(shù)為
 
,點E落在AB上,容易得出BE與DE之間的數(shù)量關(guān)系為
 
;
(2)當(dāng)點D在如圖3的位置時,請你畫出圖形,研究線段BE與DE之間的數(shù)量關(guān)系是否與(1)中的結(jié)論相同,寫出你的猜想并加以證明.
拓展應(yīng)用:
(3)如圖4,在平面直角坐標(biāo)系x0y中,點A的坐標(biāo)為(-
3
,1),點B是x軸上的一動點,以AB為邊作等邊三角形ABC.當(dāng)C(x,y)在第一象限內(nèi)時,求y與x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計算:
(1)(3
18
+
1
5
50
-4
1
2
)÷
32
;
(2)(
5
+1)2+(
5
-1)(
5
+3).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)C1:y=x2+2ax+2x-a+1,且a變化時,二次函數(shù)C1的圖象頂點M總在拋物線C2上;
(1)用含有a的式子表示頂點M的坐標(biāo),并求出拋物線C2的函數(shù)解析式;
(2)若拋物線C2的圖象與x軸交于點A、B(A在B點左側(cè)),與y軸交于點C.設(shè)E是y軸右側(cè)拋物線上一點,過點E作直線AC的平行線交x軸于點F.且滿足AC=2EF,是否存在這樣的點E,使得以A,C,E,F(xiàn)為頂點的四邊形是梯形?若存在,求出點E的坐標(biāo);若不存在,請說明理由;
(3)若P是拋物線C2對稱軸上使△ACP的周長取得最小值的點,過點P任意作一條與y軸不平行的直線l交拋物線于M、N兩點,當(dāng)y軸平分MN時,求出直線l的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解方程組
7x+5y=3
4x-5y=-4
 
法解較簡便.

查看答案和解析>>

同步練習(xí)冊答案