【題目】移動公司為了提升“停課不停學(xué)”期間某片區(qū)網(wǎng)絡(luò)信號,保證廣大師生網(wǎng)絡(luò)授課、聽課的質(zhì)量,臨時在坡度為的山坡上加裝了信號塔(如圖所示),信號塔底端到坡底的距離為3.9米.同時為了提醒市民,在距離斜坡底4.4米的水平地面上立了一塊警示牌.當(dāng)太陽光線與水平線成角時,測得信號塔落在警示牌上的影子長為3米,則信號塔的高約為(結(jié)果精確到十分位,參考數(shù)據(jù):,,)

A.11.9B.10.4C.11.4D.13.4

【答案】A

【解析】

如圖,延長PE,交BNF,延長PQ,交BNH,設(shè)QH=x米,根據(jù)坡度可求出x的值,進而可求出AH的值,根據(jù)∠HFP的正切值可求出NF的長,進而求出HF的長,利用∠HFP的正切值可求出PH的長,即可求出PQ的長.

如圖,延長PE,交BNF,延長PQ,交BNH,設(shè)QH=x米,

∵坡度,

AH=2.4x,

AQ=3.9,

x2+(2.4x)2=3.92,

解得:x=1.5,(負(fù)值舍去)

AH=2.4x=3.6

NE=3,∠HFP=53°,

NF=,

HF=AH+AN+NF=3.6+4.4+=8+

PH=HF·tanHFP≈8+×1.3=13.4,

PQ=PH-QH=11.9(米),

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠ACB=45°,DAC上一點,AD=5,連接BD,將△ABD沿BD翻折至△EBD,點A的對應(yīng)點E點恰好落在邊BC上.延長BC至點F,連接DF,若CF=2,tanABD=,則DF長為(  )

A.B.C.5D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,平分交于點,于點,下列結(jié)論:①;②;③;④點在線段的垂直平分線上,其中正確的個數(shù)有(

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,點從點出發(fā),以每秒1個單位長度的速度沿向點運動,過點的直角邊于點,以為邊向右側(cè)作正方形.設(shè)點的運動時間為秒,正方形的重疊部分的面積為

1)用含的代數(shù)式表示線段的長;

2)求的函數(shù)關(guān)系式,并直接寫出自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A是反比例函數(shù)yx0)圖象上一點,過點AABx軸于點B,連接OAOB,tanOAB.點C是反比例函數(shù)yx0)圖象上一動點,連接ACOC,若△AOC的面積為,則點C的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,等腰的底邊軸上,已知,拋物線(其中)經(jīng)過三點,雙曲線(其中)經(jīng)過點軸,軸,垂足分別為

1)求出的值;當(dāng)為直角三角形時,請求出的表達式;

2)當(dāng)為正三角形時,直線平分,求的取值范圍;

3)拋物線(其中)有一時刻恰好經(jīng)過點,且此時拋物線與雙曲線(其中)有且只有一個公共點(其中),我們不妨把此時刻的記作,請直接寫出拋物線(其中)與雙曲線(其中)有一個公共點時的取值范圍.(是已知數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,A-4,3),B0,1),將線段AB沿軸的正方向平移個單位,得到線段AB′,且A′,B′恰好都落在反比例函數(shù)的圖象上.

1)用含的代數(shù)式表示點A′,B′的坐標(biāo);

2)求的值和反比例函數(shù)的表達式;

3)點為反比例函數(shù)圖象上的一個動點,直線軸交于點,若,請直接寫出點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市對進貨價為10元/千克的某種蘋果的銷售情況進行統(tǒng)計,發(fā)現(xiàn)每天銷售量y(千克)與銷售價x(元/千克)存在一次函數(shù)關(guān)系,如圖所示.

(1)求y關(guān)于x的函數(shù)關(guān)系式(不要求寫出x的取值范圍);

(2)應(yīng)怎樣確定銷售價,使該品種蘋果的每天銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點At1)在第一象限,將OA繞點O順時針旋轉(zhuǎn)45°得到OB,若反比例數(shù)yk0)的圖象經(jīng)過點A、B,則k_____

查看答案和解析>>

同步練習(xí)冊答案