設(shè),求a2+b2+c2-ab-bc-ac的值。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

設(shè)a-b=2+
3
,b-c=2-
3
,求a2+b2+c2-ab-bc-ac的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先閱讀,再解答下列問題.
已知(a2+b24-8(a2+b22+16=0,求a2+b2的值.
錯解:設(shè)(a2+b22=m,則原式可化為m2-8m+16=0,即(m-4)2=0,解得m=4.由(a2+b22=4,得a2+b2=±2.
(1)上述解答過程出錯在哪里?為什么?
(2)請你用以上方法分解因式:(a+b)2-14(a+b)+49.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

設(shè)
3
的整數(shù)部分是a,小數(shù)部分是b,求a2+b2的值為
5-2
3
5-2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)已知a,b滿足a2+b2+4a-8b+20=0,試分解(x2+y2)-(b+axy);
(2)計算:(1-
1
22
)(1-
1
32
)(1-
1
42
)…(1-
1
20082
)(1-
1
20092
);
(3)設(shè)a=1999x+1998,b=1999x+1999,c=1999x+2000,求a2+b2+c2-ab-ac-bc的值.

查看答案和解析>>

同步練習(xí)冊答案