分析 根據(jù)已知得出設(shè)AE=x米,可得EC=(12-x)米,利用勾股定理得出DC2=DE2+EC2=4+(12-x)2,AE2+BC2=x2+36,即可求出x的值.
解答 解:如圖,連接CD,
設(shè)AE=x米,
∵坡角∠A=30°,∠B=90°,BC=6米,
∴AC=12米,
∴EC=(12-x)米,
∵正方形DEFH的邊長(zhǎng)為2米,即DE=2米,
∴DC2=DE2+EC2=4+(12-x)2,
AE2+BC2=x2+36,
∵DC2=AE2+BC2,
∴4+(12-x)2=x2+36,
解得:x=$\frac{14}{3}$米,
答:當(dāng)AE為$\frac{14}{3}$米時(shí),有DC2=AE2+BC2.
點(diǎn)評(píng) 此題主要考查了勾股定理的應(yīng)用以及一元二次方程的應(yīng)用,根據(jù)已知表示出CE,AE的長(zhǎng)度是解決問(wèn)題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 垂直 | B. | 平行 | C. | 重合 | D. | 相交 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ∠A+∠B=∠C | B. | ∠A=∠B=∠C/2 | C. | ∠A=90°-∠B | D. | ∠A-∠B=90° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{48}$ | B. | $\sqrt{{a^2}+{b^2}}$ | C. | $\sqrt{0.5}$ | D. | $\sqrt{4x+8}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com