若點(diǎn)P是第二象限內(nèi)的點(diǎn),且點(diǎn)P到x軸的距離是4,到y(tǒng)軸的距離是3,則點(diǎn)P的坐標(biāo)是( 。
分析:首先根據(jù)題意得到P點(diǎn)的橫坐標(biāo)為負(fù),縱坐標(biāo)為正,再根據(jù)到x軸的距離與到y(tǒng)軸的距離確定橫縱坐標(biāo)即可.
解答:解:∵點(diǎn)P在第二象限,
∴P點(diǎn)的橫坐標(biāo)為負(fù),縱坐標(biāo)為正,
∵到x軸的距離是4,
∴縱坐標(biāo)為:4,
∵到y(tǒng)軸的距離是3,
∴橫坐標(biāo)為:-3,
∴P(-3,4),
故選:C.
點(diǎn)評(píng):本題主要考查了平面直角坐標(biāo)系中各個(gè)象限的點(diǎn)的坐標(biāo)的符號(hào)特點(diǎn),熟練掌握其特點(diǎn)是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:在直角坐標(biāo)系中,直線y=2x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.
(1)畫出這個(gè)函數(shù)的圖象,并直接寫出A,B兩點(diǎn)的坐標(biāo);
(2)若點(diǎn)C是第二象限內(nèi)的點(diǎn),且到x軸的距離為1,到y(tǒng)軸的距離為
12
,請(qǐng)判斷點(diǎn)C是否在這條直線上?(寫出判斷過程)
(3)在第(2)題中,作CD⊥x軸于D,那么在x軸上是否存在一點(diǎn)P,使△CDP≌△AOB?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線y=kx+6與x、y軸分別交于E、F.點(diǎn)E坐標(biāo)為(-8,0),點(diǎn)A的坐標(biāo)為(-6,0),P(x,y)是直線y=kx+6上的一個(gè)動(dòng)點(diǎn).
(1)求k的值;
(2)若點(diǎn)P是第二象限內(nèi)的直線上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)過程中,試寫出三角形OPA的面積S與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)探究:當(dāng)P運(yùn)動(dòng)到什么位置時(shí),三角形OPA的面積為
278
,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:在直角坐標(biāo)系中,直線y=2x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.
(1)畫出這個(gè)函數(shù)的圖象,并直接寫出A,B兩點(diǎn)的坐標(biāo);
(2)若點(diǎn)C是第二象限內(nèi)的點(diǎn),且到x軸的距離為1,到y(tǒng)軸的距離為數(shù)學(xué)公式,請(qǐng)判斷點(diǎn)C是否在這條直線上?(寫出判斷過程)
(3)在第(2)題中,作CD⊥x軸于D,那么在x軸上是否存在一點(diǎn)P,使△CDP≌△AOB?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

若點(diǎn)P是第二象限內(nèi)的點(diǎn),且點(diǎn)P到x軸的距離是4,到y(tǒng)軸的距離是3,則點(diǎn)P的坐標(biāo)是


  1. A.
    (-4,3)
  2. B.
    (4,-3)
  3. C.
    (-3,4)
  4. D.
    (3,-4)

查看答案和解析>>

同步練習(xí)冊(cè)答案