【題目】九年級(jí)七班“數(shù)學(xué)興趣小組”對(duì)函數(shù)的對(duì)稱變換進(jìn)行探究,以下是探究發(fā)現(xiàn)運(yùn)用過程,請(qǐng)補(bǔ)充完整.
(1)操作發(fā)現(xiàn),在作函數(shù)y=|x|的圖象時(shí),采用了分段函數(shù)的辦法,該函數(shù)轉(zhuǎn)化為y= ,請(qǐng)?jiān)谌鐖D1所示的平面直角坐標(biāo)系中作出函數(shù)的圖象;

(2)類比探究
作函數(shù)y=|x﹣1|的圖象,可以轉(zhuǎn)化為分段函數(shù) , 然后分別作出兩段函數(shù)的圖象.聰明的小昕,利用坐標(biāo)平面上的軸對(duì)稱知識(shí),把函數(shù)y=x﹣1在x軸下面部分,沿x軸進(jìn)行翻折,與x軸上及上面部分組成了函數(shù)y=|x﹣1|的圖象,如圖所示;

(3)拓展提高
如圖2右圖是函數(shù)y=x2﹣2x﹣3的圖象,請(qǐng)?jiān)谠鴺?biāo)系作函數(shù)y=|x2﹣2x﹣3|的圖象;

(4)實(shí)際運(yùn)用
①函數(shù) 的圖象與x軸有個(gè)交點(diǎn),對(duì)應(yīng)方程|x2﹣2x﹣3|=0有個(gè)實(shí)根;
②函數(shù) 的圖象與直線y=5有個(gè)交點(diǎn),對(duì)應(yīng)方程|x2﹣2x﹣3|=5有個(gè)實(shí)根;
③函數(shù) 的圖象與直線y=4有個(gè)交點(diǎn),對(duì)應(yīng)方程 個(gè)實(shí)根;
④關(guān)于x的方程 有4個(gè)實(shí)根時(shí),a的取值范圍是

【答案】
(1)

解:如圖1,


(2)
(3)

解:把函數(shù)y=x2﹣2x﹣3的圖象在x軸下面部分,沿x軸進(jìn)行翻折,與x軸上及上面部分組成了函數(shù)y=|x2﹣2x﹣3|的圖象,如圖2;


(4)2;2;2;2;3;3;0<a<4
【解析】解:(2.)類比探究
作函數(shù)y=|x﹣1|的圖象,可以轉(zhuǎn)化為分段函數(shù)y= ;(4)實(shí)際運(yùn)用①函數(shù)y=|x2﹣2x﹣3|的圖象與x軸有 2個(gè)交點(diǎn),對(duì)應(yīng)方程|x2﹣2x﹣3|=0有2個(gè)實(shí)根;②函數(shù)y=|x2﹣2x﹣3|的圖象與直線y=5有 2個(gè)交點(diǎn),對(duì)應(yīng)方程|x2﹣2x﹣3|=5有2個(gè)實(shí)根;③函數(shù)y=|x2﹣2x﹣3|的圖象與直線y=4有3個(gè)交點(diǎn),對(duì)應(yīng)方程|x2﹣2x﹣3|=4有3個(gè)實(shí)根;④關(guān)于x的方程|x2﹣2x﹣3|=a有4個(gè)實(shí)根時(shí),a的取值范圍是 0<a<4.
故答案為y= ;2,2;2,2;3,3;0<a<4.
(1)利用描點(diǎn)法畫y=|x|的圖象;(2)根據(jù)絕對(duì)值的意義,利用分類討論的思想寫出分段函數(shù);(3)與(2)畫函數(shù)圖象的方法一樣,把函數(shù)y=x2﹣2x﹣3的圖象在x軸下面部分,沿x軸進(jìn)行翻折可得到函數(shù)y=|x2﹣2x﹣3|的圖象;(4)利用畫函數(shù)圖象,通過確定y=|x2﹣2x﹣3|的圖象與直線y=a的交點(diǎn)個(gè)數(shù)解決問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某體育老師對(duì)自己任教的55名男生進(jìn)行一百米摸底測(cè)試,若規(guī)定男生成績(jī)?yōu)?6秒合格,下表是隨機(jī)抽取的10名男生分AB兩組測(cè)試的成績(jī)與合格標(biāo)準(zhǔn)的差值(比合格標(biāo)準(zhǔn)多的秒數(shù)為正,少的秒數(shù)為負(fù))。

A

-1.5

+1.5

-1

-2

-2

B

+1

+3

-3

+2

-3

(1)請(qǐng)你估算從55名男生中合格的人數(shù)大約是多少?

(2)通過相關(guān)的計(jì)算,說明哪個(gè)組的成績(jī)比較均勻;

(3)至少舉出三條理由說明A組成績(jī)好于B組成績(jī),或找出一條理由來說明B組好于A組。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,在△ABC中,∠ACB2B,C90°,AD為∠BAC的平分線交BCD,求證:ABACCD.(提示:在AB上截取AEAC,連接DE

2)如圖2,當(dāng)∠C90°時(shí),其他條件不變,線段AB、AC、CD又有怎樣的數(shù)量關(guān)系,直接寫出結(jié)果,不需要證明.

3)如圖3,當(dāng)∠ACB90°,ACB2B ,AD為△ABC的外角∠CAF的平分線,交BC的延長(zhǎng)線于點(diǎn)D,則線段 AB、ACCD又有怎樣的數(shù)量關(guān)系?寫出你的猜想,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司組織退休職工組團(tuán)前往某景點(diǎn)游覽參觀,參加人員共70人.旅游景點(diǎn)規(guī)定:①門票每人60元,無優(yōu)惠;②上山游覽必須乘坐景點(diǎn)安排的觀光車游覽,觀光車有小型車和中型車兩類,分別可供4名和11名乘客乘坐;且小型車每輛收費(fèi)60元,中型車每人收費(fèi)10元.若70人正好坐滿每輛車且參觀游覽的總費(fèi)用不超過5000元,問景點(diǎn)安排的小型車和中型車各多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某工程隊(duì)從A點(diǎn)出發(fā),沿北偏西67°方向修一條公路AD,在BD路段出現(xiàn)塌陷區(qū),就改變方向,由B點(diǎn)沿北偏東23°的方向繼續(xù)修建BC段,到達(dá)C點(diǎn)又改變方向,從C點(diǎn)繼續(xù)修建CE段,若使所修路段CEAB,ECB應(yīng)為多少度?試說明理由.此時(shí)CEBC有怎樣的位置關(guān)系?

以下是小剛不完整的解答,請(qǐng)幫她補(bǔ)充完整.

解:由已知,根據(jù)   

得∠1=A=67°

所以,∠CBD=23°+67°=   °;

根據(jù)   

當(dāng)∠ECB+CBD=   °時(shí),可得CEAB.

所以∠ECB=  °

此時(shí)CEBC的位置關(guān)系為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察如圖所示的圖形,回答下列問題:

(1) 圖中的點(diǎn)被線段隔開分成四層,第一層有1個(gè)點(diǎn),第二層有3個(gè)點(diǎn),第三層有5個(gè)點(diǎn),第四層有___________個(gè)點(diǎn);

(2) 如果要你繼續(xù)畫下去,那么第五層有________點(diǎn), 10層有_________點(diǎn);

(3) 某一層上有77個(gè)點(diǎn),你可知道這是第_________層;

(4) 第一層與第二層的和是__________,前三層的和是_________,前四層和為____________,

你有沒有發(fā)現(xiàn)什么規(guī)律?

根據(jù)你的推測(cè),前一百層的和是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD和正方形AEFG有一個(gè)公共點(diǎn)A,點(diǎn)G、E分別在線段AD、AB上,若將正方形AEFG繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn),連接DG,在旋轉(zhuǎn)的過程中,你能否找到一條線段的長(zhǎng)與線段DG的長(zhǎng)度始終相等?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)在第一象限,過點(diǎn)Ax軸作垂線,垂足為點(diǎn)B,連接OA,,點(diǎn)MO出發(fā),沿y軸的正半軸以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)N從點(diǎn)B出發(fā)以每秒3個(gè)單位長(zhǎng)度的速度向x軸負(fù)方向運(yùn)動(dòng),點(diǎn)M與點(diǎn)N同時(shí)出發(fā),設(shè)點(diǎn)M的運(yùn)動(dòng)時(shí)間為t秒,連接AMAN,MN

a的值;

當(dāng)時(shí),

請(qǐng)?zhí)骄?/span>,,之間的數(shù)量關(guān)系,并說明理由;

試判斷四邊形AMON的面積是否變化?若不變化,請(qǐng)求出其值;若變化,請(qǐng)說明理由.

當(dāng)時(shí),請(qǐng)求出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=2x+2與y軸交于A點(diǎn),與反比例函數(shù) (x>0)的圖象交于點(diǎn)M,過M作MH⊥x軸于點(diǎn)H,且tan∠AHO=2.

(1)求k的值;
(2)點(diǎn)N(a,1)是反比例函數(shù) (x>0)圖象上的點(diǎn),在x軸上是否存在點(diǎn)P,使得PM+PN最?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案