【題目】如圖,菱形ABCD中,對角線AC6,BD8,M、N分別是BC、CD上的動點,P是線段BD上的一個動點,則PMPN的最小值是(

A. B. C. D.

【答案】D

【解析】

M關(guān)于BD的對稱點Q,連接NQ,交BDP,連接MP,此時MP+NP=NQ最小,NQ為所求,當NQAB時,NQ最小,繼而利用面積法求出NQ長即可得答案.

M關(guān)于BD的對稱點Q,連接NQ,交BDP,連接MP,此時MP+NP=NQ最小,NQ為所求,當NQAB時,NQ最小,

∵四邊形ABCD是菱形,AC=6,DB=8,

OA=3,OB=4ACBD,

RtAOB中,AB==5,

S菱形ABCD=

,

NQ=,

PM+PN的最小值為,

故選D.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將ABC繞點A順時針旋轉(zhuǎn)60°得到ADE,點C的對應(yīng)點E恰好落在BA的延長線上,DEBC交于點F,連接BD.下列結(jié)論不一定正確的是( 。

A. AD=BD B. ACBD C. DF=EF D. CBD=E

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ACD中,∠ACD=60°,以AC為邊作等腰三角形ABCAB=AC,E、F分別為邊CD、BC上的點,連結(jié)AE、AFEF,∠BAC=EAF=60°

1)求證:ABF≌△ACE

2)若∠AED=70°,求∠EFC的度數(shù);

3)請直接指出:當F點在BC何處時,ACEF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC△DBE中,BC=BE,還需再添加兩個條件才能使△ABC≌△DBE,不能添加的一組條件是( )

A. AB=DB,∠ A=∠ D B. DB=AB,AC=DE C. AC=DE∠C=∠E D. ∠ C=∠ E,∠ A=∠ D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,四邊形ABCD是正方形,MAB延長線上一點.直角三角尺的一條直角邊經(jīng)過點D,且直角頂點EAB邊上滑動(點E不與點A、B重合),另一直角邊與∠CBM的平分線BF相交于點F

1)如圖1,當點EAB邊得中點位置時:

通過測量DE、EF的長度,猜想DEEF滿足的數(shù)量關(guān)系是

連接點EAD邊的中點N,猜想NEBF滿足的數(shù)量關(guān)系是 ,請證明你的猜想.

2)如圖2,當點EAB邊上的任意位置時,猜想此時DEEF有怎樣的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD沿EF折疊,使頂點C恰好落在AB邊的C'處,點D落在點D'處,C'D'交線段AE于點G.

1)求證:BC'F∽△AGC';

2)若C'AB的中點,AB=6BC=9,求AG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB12,點EAD上的一點,AE6,BE的垂直平分線交BC的延長線于點F,連接EFCD于點G.若GCD的中點,則BC的長是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,E、F是四邊形ABCD的對角線AC上的兩點,AF=CE,DF=BE,DFBE

求證:(1)AFD≌△CEB.(2)四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電器超市銷售每臺進價分別為200元、170元的A、B兩種型號的電風扇,下表是近兩周的銷售情況:

(進價、售價均保持不變,利潤 = 銷售收入-進貨成本)

1)求AB兩種型號的電風扇的銷售單價;

2)若超市準備用不多于5400元的金額再采購這兩種型號的電風扇共30臺,求A種型號的電風扇最多能采購多少臺?

3)在(2)的條件下,超市銷售完這30臺電風扇能否實現(xiàn)利潤為1400元的目標?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案