【題目】如圖,為加快5G網(wǎng)絡(luò)建設(shè),某通信公司在一個坡度i=1:2.4的山坡AB上建了一座信號塔CD,信號塔底端C到山腳A的距離AC=13米,在距山腳A水平距離18米的E處,有一高度為10米的建筑物EF,在建筑物頂端F處測得信號塔頂端D的仰角為37°(信號塔及山坡的剖面和建筑物的剖面在同一平面上),則信號塔CD的高度約是( 。▍⒖紨(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
A.22.5米B.27.5米C.32.5米D.45.0米
【答案】B
【解析】
過點F作FH⊥DC于點H,延長DC交EA于點G,可得四邊形EFHG是矩形,根據(jù)AB的坡度i=1:2.4,AC=13,可得CG=5,AG=12,CH=GH﹣CG=10﹣5=5,再根據(jù)銳角三角函數(shù)即可求出信號塔CD的高度.
解:如圖,過點F作FH⊥DC于點H,
延長DC交EA于點G,
則四邊形EFHG是矩形,
∴FH=GE,CG=EF,
∵AB的坡度i=1:2.4,AC=13,
∴CG=5,AG=12,
∴CH=GH﹣CG=10﹣5=5,
∴GE=AG+AE=12+18=30,
∴在Rt△DCF中,∠DFC=37°,FH=GE=30,
∴DH=FHtan37°≈30×0.75≈22.5,
∴CD=DH+CH≈22.5+5≈27.5(米).
所以信號塔CD的高度約是27.5米.
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O中,AB是⊙O的直徑,G為弦AE的中點,連接OG并延長交⊙O于點D,連接BD交AE于點F,延長AE至點C,使得FC=BC,連接BC.
(1)求證:BC是⊙O的切線;
(2)⊙O的半徑為5,tanA=,求FD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△DEF由△ABC平移得到,∠DFE=∠CDF=30°,∠DEF=90°,BE⊥DF于點B.連接CE,AB=3.
(1)求證:四邊形ACDF為矩形
(2)求線段CE的長和△CEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,.點從點出發(fā),沿方向以每秒個單位長度的速度向終點運動(點不與重合),過點作交折線于點以為邊問下作正方形點落在邊上設(shè)點運動的時間為(秒).
(1)直接用含的代數(shù)式表示線段的長.
(2)當(dāng)點落在邊上時,求的值.
(3)當(dāng)正方形與重疊部分圖形為四邊形時,設(shè)四邊形的面積為(平方單位),求與之間的函數(shù)關(guān)系式.
(4)點為邊的中點,直接寫出直線將正方形分成的兩部分圖形的面積比為時的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某駐村扶貧小組實施產(chǎn)業(yè)扶貧,幫助貧困農(nóng)戶進(jìn)行西瓜種植和銷售.已知西瓜的成本為6元/千克,規(guī)定銷售單價不低于成本,又不高于成本的兩倍.經(jīng)過市場調(diào)查發(fā)現(xiàn),某天西瓜的銷售量y(千克)與銷售單價x(元/千克)的函數(shù)關(guān)系如下圖所示:
(1)求y與x的函數(shù)解析式(也稱關(guān)系式);
(2)求這一天銷售西瓜獲得的利潤的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=2,∠ABC=45°,點E為射線AD上一動點,連接BE,將BE繞點B逆時針旋轉(zhuǎn)60°得到BF,連接AF,則AF的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,對角線AC、BD相交于點O,點E為線段BO上一點,連接CE,將CE繞點C順時針旋轉(zhuǎn)90°得到CF,連接EF交CD于點G.
(1)若AB=4,BE=,求△CEF的面積.
(2)如圖2,線段FE的延長線交AB于點H,過點F作FM⊥CD于點M,求證:BH+MG=BE;
(3)如圖3,點E為射線OD上一點,線段FE的延長線交直線CD于點G,交直線AB于點H,過點F作FM垂直直線CD于點M,請直接寫出線段BH、MG、BE的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形以點為圓心,以任意長為半徑作弧分別交、于兩點,再分別以點為圓心,以大于的長為半徑作弧交于點,作射線交于點,若,則矩形的面積等于__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在大樓AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小紅在斜坡下的點C處測得樓頂B的仰角為60°,在斜坡上的點D處測得樓頂B的仰角為45°,其中點A、C、E在同一直線上.
(1)求斜坡CD的高度DE;
(2)求大樓AB的高度(結(jié)果保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com