若一直角三角形的斜邊長(zhǎng)為,內(nèi)切圓半徑是,則內(nèi)切圓的面積與三角形面積之比是(    )
A.B.C.D.
B
連接內(nèi)心和直角三角形的各個(gè)頂點(diǎn),設(shè)直角三角形的兩條直角邊是a,b.則直角三角形的面積是r;又直角三角形內(nèi)切圓的半徑r=,則a+b=2r+c,所以直角三角形的面積是r(r+c);因?yàn)閮?nèi)切圓的面積是πr2,則它們的比是
解:設(shè)直角三角形的兩條直角邊是a,b,則有:
S=r,又∵r=,∴∴a+b=2r+c,
將a+b=2r+c代入S =r得:S=r=r(r+c)
又∵內(nèi)切圓的面積是πr2,∴它們的比是。
故答案選B 。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,AB是⊙O直徑,且AB=4cm,弦CD⊥AB,∠COB=45°,則CD為   ▲  cm.   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)
如圖,在△ACB中,∠ACB = 90°,AC = 4,BC = 2,點(diǎn)P為射線CA上的一個(gè)動(dòng)點(diǎn),以為圓心,1為半徑作
(1)連結(jié),若,試判斷與直線AB的位置關(guān)系,并說(shuō)明理由;
(2)當(dāng)PC為              時(shí),與直線AB相切?當(dāng)與直線AB相交時(shí),寫出PC的取值范圍為                  ;
(3)當(dāng)與直線AB相交于點(diǎn)M、N時(shí),是否存在△PMN為正三角形?若存在,求出PC的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(2011四川瀘州,7,2分)已知⊙O的半徑OA=10cm,弦AB=16cm,P為弦AB上的一個(gè)動(dòng)點(diǎn),則OP的最短距離為(  )
A.5cmB.6cmC.8cmD.10cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,PA為⊙O的切線,A為切點(diǎn),PO交⊙O于點(diǎn)B,PA=4,OA=3,則cos∠APO
的值為(     )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分9分)如圖已知AB是的切線,切點(diǎn)為于點(diǎn)過(guò)點(diǎn)于點(diǎn)

(1)求證:;
(2)若的半徑為4,求CD的長(zhǎng);
(3)求陰影部分的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分8分)
如圖,已知在⊙O中,AB=4,AC是⊙O的直徑,AC⊥BD于F,∠A=30°.

(1)求圖中陰影部分的面積;

 

 
(2)若用陰影扇形OBD圍成一個(gè)圓錐側(cè)面,請(qǐng)求出這個(gè)圓錐的底面圓的半徑.

(3) 試判斷⊙O中其余部分能否給(2)中的圓錐做兩個(gè)底面。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(2011•溫州)如圖,O是正方形ABCD的對(duì)角線BD上一點(diǎn),⊙O與邊AB,BC都相切,點(diǎn)E,F(xiàn)分別在AD,DC上,現(xiàn)將△DEF沿著EF對(duì)折,折痕EF與⊙O相切,此時(shí)點(diǎn)D恰好落在圓心O處.若DE=2,則正方形ABCD的邊長(zhǎng)是(  )
A.3B.4
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(11·肇慶)(本小題滿分10分)己知:如圖10.△ABC內(nèi)接于⊙O,AB為直徑,∠CBA的平分線交AC干點(diǎn)F,交⊙O于點(diǎn)D,DE⊥AB于點(diǎn)E,且交AC于點(diǎn)P,連結(jié)AD.
(1)求證:∠DAC=∠DBA
(2)求證:P處線段AF的中點(diǎn)

查看答案和解析>>

同步練習(xí)冊(cè)答案