【題目】把多項式x2+ax+b分解因式,得(x+1)(x﹣3),則a,b的值分別是( )
A.a=2,b=3
B.a=﹣2,b=﹣3
C.a=﹣2,b=3
D.a=2,b=﹣3
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和幾位同學(xué)做手的影子游戲時,發(fā)現(xiàn)對于同一物體,影子的大小與光源到物體的距離有關(guān).因此,他們認(rèn)為:可以借助物體的影子長度計算光源到物體的位置.于是,他們做了以下嘗試.
(1)如圖1,垂直于地面放置的正方形框架ABCD,邊長AB為30cm,在其正上方有一燈泡,在燈泡的照射下,正方形框架的橫向影子A′B,D′C的長度和為6cm.那么燈泡離地面的高度為 .
(2)不改變圖1中燈泡的高度,將兩個邊長為30cm的正方形框架按圖2擺放,請計算此時橫向影子A′B,D′C的長度和為多少?
(3)有n個邊長為a的正方形按圖3擺放,測得橫向影子A′B,D′C的長度和為b,求燈泡離地面的距離.(寫出解題過程,結(jié)果用含a,b,n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰直角三角形ABC的頂點A,C在x軸上,∠ACB=90°,AC=BC=,反比例函數(shù)()的圖象分別與AB,BC交于點D,E.連接DE,當(dāng)△BDE∽△BCA時,點E的坐標(biāo)為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,張老師出示了問題:如圖1,四邊形ABCD是正方形,點E是邊BC的中點.∠AEF=90°,且EF交正方形外角∠DCG的平分線CF于點F,求證:AE=EF.
經(jīng)過思考,小明展示了一種正確的解題思路:在AB上截取BM=BE,連接ME,則AM=EC,易證△AME≌△ECF,所以AE=EF.
在此基礎(chǔ)上,同學(xué)們作了進一步的研究:
(1)小穎提出:如圖2,如果把“點E是邊BC的中點”改為“點E是邊BC上(除B,C外)的任意一點”,其它條件不變,那么結(jié)論“AE=EF”仍然成立,你認(rèn)為小穎的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由;
(2)小華提出:如圖3,點E是BC的延長線上(除C點外)的任意一點,其他條件不變,結(jié)論“AE=EF”仍然成立。你認(rèn)為小華的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校九年級學(xué)生舉行朗誦比賽,全年級學(xué)生都參加,學(xué)校對表現(xiàn)優(yōu)異的學(xué)生進行表彰,設(shè)置一、二、三等獎各進步獎共四個獎項,賽后將九年級(1)班的獲獎情況繪制成如圖所示的兩幅不完整的統(tǒng)計圖,請根據(jù)圖中的信息,解答下列問題:
(1)九年級(1)班共有 名學(xué)生;
(2)將條形圖補充完整:在扇形統(tǒng)計圖中,“二等獎”對應(yīng)的扇形的圓心角度數(shù)是 ;
(3)如果該九年級共有1250名學(xué)生,請估計榮獲一、二、三等獎的學(xué)生共有多少名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上線段AB=2(單位長度),CD=4(單位長度),點A在數(shù)軸上表示的數(shù)是﹣10,點C在數(shù)軸上表示的數(shù)是16.若線段AB以6個單位長度/秒的速度向右勻速運動,同時線段CD以2個單位長度/秒的速度向左勻速運動.
(1)問運動多少時BC=8(單位長度)?
(2)當(dāng)運動到BC=8(單位長度)時,點B在數(shù)軸上表示的數(shù)是;
(3)P是線段AB上一點,當(dāng)B點運動到線段CD上時,是否存在關(guān)系式 =3,若存在,求線段PD的長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com