【題目】四邊形ABCD是正方形(提示:正方形四邊相等,四個(gè)角都是90°)
(1)如圖1,若點(diǎn)G是線(xiàn)段CD邊上任意一點(diǎn)(不與點(diǎn)C、D重合),連接AG,作BF⊥AG于點(diǎn)F,DE⊥AG于點(diǎn)E,求證:△ABF≌△DAE.
(2)如圖2,若點(diǎn)G是線(xiàn)段CD延長(zhǎng)線(xiàn)上任意一點(diǎn),連接AG,作BF⊥AG于點(diǎn)F,DE⊥AG于點(diǎn)E,判斷線(xiàn)段EF與AF、BF的數(shù)量關(guān)系,并證明.
(3)若點(diǎn)G是直線(xiàn)BC上任意一點(diǎn)(不與點(diǎn)B、C重合),連接AG,作BF⊥AG于點(diǎn)F,DE⊥AG于點(diǎn)E,探究線(xiàn)段EF與AF、BF的數(shù)量關(guān)系.(請(qǐng)畫(huà)圖、不用證明、直接寫(xiě)答案)
【答案】
(1)
證明:如圖1,∵四邊形ABCD是正方形,
∴AB=AD,∠DAB=90°,
∴∠DAE+∠BAE=90°,
∵DE⊥AG,BF⊥AG,
∴∠AED=∠AFB=90°,
∴∠EAD+∠ADE=90°,
∴∠ADE=∠BAF,
∵在△ABF和△DAE中
,
∴△ABF≌△DAE(AAS)
(2)
解:EF=AF+BF,
理由是:如圖2,
∵四邊形ABCD是正方形,
∴AB=AD,∠DAB=90°,
∴∠DAE+∠BAF=180°﹣90°=90°,
∵DE⊥AG,BF⊥AG,
∴∠AED=∠AFB=90°,
∴∠EAD+∠ADE=90°,
∴∠ADE=∠BAF,
∵在△ABF和△DAE中
,
∴△ABF≌△DAE(AAS);
∴AE=BF,
∴EF=AE+AF=AF+BF
(3)
解:如圖3所示:
∵BF⊥AG,DE⊥AG,
∴∠BFA=∠DEA=90°.
∵∠BAF+∠ABF=90°,∠BAF+∠EAD=90°,
∴∠EAD=∠FBA.
在△ABF和△DAE中,
∵ ,
∴△ABF≌△DAE(AAS).
∴FB=AE.
∵AE=EF+AF,
∴EF=BF﹣AF.
如圖4,∵DE⊥AG,BF⊥AG,
∴∠BFA=∠DEA=90°.
∵∠BAF+∠ABF=90°,∠BAF+∠EAD=90°,
∴∠EAD=∠FBA.
在△ABF和△DAE中,
∵ ,
∴△ABF≌△DAE(AAS).
∴AE=BF.
∵AE+EF=AF,
∴EF=AF﹣BF;
如圖5,
∵DE⊥AG,BF⊥AG,
∴∠BFA=∠DEA=90°.
∵∠BAF+∠ABF=90°,∠BAF+∠EAD=90°,
∴∠EAD=∠FBA.
在△ABF和△DAE中,
,
∴△ABF≌△DAE(AAS).
∴AE=BF.
∵AE+AF=EF,
∴EF=AF+BF.
【解析】(1)根據(jù)正方形性質(zhì)得出AB=AD,∠DAB=90°,根據(jù)垂直定義得出∠AED=∠AFB=90°,求出∠ADE=∠BAF,根據(jù)AAS證出兩三角形全等即可;(2)根據(jù)正方形性質(zhì)得出AB=AD,∠DAB=90°,根據(jù)垂直定義得出∠AED=∠AFB=90°,求出∠ADE=∠BAF,根據(jù)AAS證出兩三角形全等即可,根據(jù)全等得出AE=BF,代入即可求出答案;(3)根據(jù)正方形性質(zhì)得出AB=AD,∠DAB=90°,根據(jù)垂直定義得出∠AED=∠AFB=90°,求出∠ADE=∠BAF,根據(jù)AAS證出兩三角形全等即可,結(jié)合G點(diǎn)可能在BC延長(zhǎng)線(xiàn)上以及在線(xiàn)段BC上和在CB延長(zhǎng)線(xiàn)上分別得出答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,真命題是( ).
A.兩條對(duì)角線(xiàn)垂直且相等的四邊形是正方形
B.兩條對(duì)角線(xiàn)互相垂直的四邊形是菱形
C.兩條對(duì)角線(xiàn)互相平分且相等的四邊形是矩形
D.一組對(duì)邊平行,另一組對(duì)邊相等的四邊形是平行四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,梯形OABC中,O為直角坐標(biāo)系的原點(diǎn),A、B、C的坐標(biāo)分別為(14,0)、(14,3)、(4,3).點(diǎn)P、Q同時(shí)從原點(diǎn)出發(fā),分別作勻速運(yùn)動(dòng),其中點(diǎn)P沿OA向終點(diǎn)A運(yùn)動(dòng),速度為每秒1個(gè)單位;點(diǎn)Q沿OC、CB向終點(diǎn)B運(yùn)動(dòng),當(dāng)這兩點(diǎn)中有一點(diǎn)到達(dá)自己的終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).設(shè)P從出發(fā)起運(yùn)動(dòng)了t秒.
(1)如果點(diǎn)Q的速度為每秒2個(gè)單位,①試分別寫(xiě)出這時(shí)點(diǎn)Q在OC上或在CB上時(shí)的坐標(biāo)(用含t的代數(shù)式表示,不要求寫(xiě)出t的取值范圍);
②求t為何值時(shí),PQ∥OC?
(2)如果點(diǎn)P與點(diǎn)Q所經(jīng)過(guò)的路程之和恰好為梯形OABC的周長(zhǎng)的一半,①試用含t的代數(shù)式表示這時(shí)點(diǎn)Q所經(jīng)過(guò)的路程和它的速度;
②試問(wèn):這時(shí)直線(xiàn)PQ是否可能同時(shí)把梯形OABC的面積也分成相等的兩部分?如有可能,求出相應(yīng)的t的值和P、Q的坐標(biāo);如不可能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線(xiàn)交AB于M,交AC于N.
(1)若∠ABC=70°,則∠MNA的度數(shù)是 .
(2)連接NB,若AB=8cm,△NBC的周長(zhǎng)是14cm. ①求BC的長(zhǎng);
②在直線(xiàn)MN上是否存在P,使由P、B、C構(gòu)成的△PBC的周長(zhǎng)值最?若存在,標(biāo)出點(diǎn)P的位置并求△PBC的周長(zhǎng)最小值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC與△ADE關(guān)于直線(xiàn)MN對(duì)稱(chēng),BC與DE的交點(diǎn)F在直線(xiàn)MN上.
(1)圖中點(diǎn)B的對(duì)稱(chēng)點(diǎn)是 , 點(diǎn)C的對(duì)稱(chēng)點(diǎn)是;
(2)寫(xiě)出圖中相等的一對(duì)線(xiàn)段是 , 相等的一對(duì)角是;
(3)寫(xiě)出圖中全等的一對(duì)三角形是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B=40°,∠C=70°,AD是△BAC的角平分線(xiàn),求∠ADC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:關(guān)于x的方程x2﹣6x+8﹣t=0有兩個(gè)實(shí)數(shù)根x1,x2,且(x1﹣2)(x2﹣2)=﹣6,則t=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某通訊公司推出①、②兩種通訊收費(fèi)方式供用戶(hù)選擇,其中一種有月租費(fèi),另一種無(wú)月租費(fèi),且兩種收費(fèi)方式的通訊時(shí)間x(分鐘)與收費(fèi)y(元)之間的函數(shù)關(guān)系如圖所示.
(1)有月租費(fèi)的收費(fèi)方式是(填①或②),月租費(fèi)是元;
(2)分別求出①、②兩種收費(fèi)方式中y與自變量x之間的函數(shù)關(guān)系式;
(3)請(qǐng)你根據(jù)用戶(hù)通訊時(shí)間的多少,給出經(jīng)濟(jì)實(shí)惠的選擇建議.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com