【題目】如圖,在四邊形ABCD中,AD//BC,∠ABC=∠ADC=90°,對角線AC,BD交于點O,DE平分∠ADC交BC于點E,連接OE.
(1)求證:四邊形ABCD是矩形;
(2)若AB=2,求△OEC的面積.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,以AB為直徑的⊙O分別交AC,BC于點D,E.連接ED,若ED=EC.
(1)求證:AB=AC;
(2)填空:①若AB=6,CD=4,則BC=;
②連接OD,當∠A的度數(shù)為時,四邊形ODEB是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=AC=2 ,AD為BC邊上的高,動點P在AD上,從點A出發(fā),沿A→D方向運動,設AP=x,△ABP的面積為S1 , 矩形PDFE的面積為S2 , y=S1+S2 , 則y與x的關系式是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
上課時李老師提出這樣一個問題:對于任意實數(shù)x,關于x的不等式x2﹣2x﹣1﹣a>0恒成立,求a的取值范圍.
小捷的思路是:原不等式等價于x2﹣2x﹣1>a,設函數(shù)y1=x2﹣2x﹣1,y2=a,畫出兩個函數(shù)的圖象的示意圖,于是原問題轉(zhuǎn)化為函數(shù)y1的圖象在y2的圖象上方時a的取值范圍.
(1)請結(jié)合小捷的思路回答:
對于任意實數(shù)x,關于x的不等式x2﹣2x﹣1﹣a>0恒成立,則a的取值范圍是 .
(2)參考小捷思考問題的方法,解決問題:
關于x的方程x﹣4= 在0<a<4范圍內(nèi)有兩個解,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=ax2+2ax﹣3a(a>0)與x軸交于A,B兩點(點A在點B的左側(cè)).
(1)求拋物線的對稱軸及線段AB的長;
(2)拋物線的頂點為P,若∠APB=120°,求頂點P的坐標及a的值;
(3)若在拋物線上存在一點N,使得∠ANB=90°,結(jié)合圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2014年3月31日是全國中小學生安全教育日,某校全體學生參加了“珍愛生命,預防溺水”專題活動,學習了游泳“五不準”,為了了解學生對“五不準”的知曉情況,隨機抽取了200名學生作調(diào)查,請根據(jù)下面兩個不完整的統(tǒng)計圖解答問題:
(1)求在這次調(diào)查中,“能答5條”人數(shù)的百分比和“僅能答3條”的人數(shù);
(2)若該校共有2000名學生,估計該校能答3條不準以上(含3條)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,我國漁政船在釣魚島海域C處測得釣魚島A在漁政船的北偏西30°的方向上,隨后漁政船以80海里/小時的速度向北偏東30°的方向航行,半小時后到達B處,此時又測得釣魚島A在漁政船的北偏西60°的方向上,求此時漁政船距釣魚島A的距離AB.(結(jié)果保留小數(shù)點后一位,其中 =1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線AB過點A(m,0),B(0,n),且m+n=20(其中m>0,n>0).
(1)m為何值時,△OAB面積最大?最大值是多少?
(2)如圖2,在(1)的條件下,函數(shù) 的圖象與直線AB相交于C、D兩點,若 ,求k的值.
(3)在(2)的條件下,將△OCD以每秒1個單位的速度沿x軸的正方向平移,如圖3,設它與△OAB的重疊部分面積為S,請求出S與運動時間t(秒)的函數(shù)關系式(0<t<10).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com