【題目】“十一”黃金周期間,各地景區(qū)游人如織,其中淮安動(dòng)物園在9月30日的游客人數(shù)為1萬人,接下來的七天假期中每天接待的游客人數(shù)變化如下表(正數(shù)表示比前一天多的人數(shù),負(fù)數(shù)表示比前一天少的人數(shù)).
日期 | 10月1日 | 10月2日 | 10月3日 | 10月4日 | 10月5日 | 10月6日 | 10月7日 |
人數(shù)變化 (單位:萬人) |
(1)請根據(jù)計(jì)算判斷七天內(nèi)游客人數(shù)最多的是哪天,有多少萬人?
(2)若以9月30日的游客人數(shù)1萬人為標(biāo)準(zhǔn),每人門票均為10元,問黃金周期間淮安動(dòng)物園平均每天門票多收入多少萬元?
【答案】(1)旅游人數(shù)最多的一天是10月3日,達(dá)到3.4萬人;(2)平均每天門票多收入萬元.
【解析】
(1)分別計(jì)算每一天的人數(shù)后,做出判斷即可,
(2)求出這七天的旅游總?cè)藬?shù),再求出總價(jià)即可,求出平均每天的收入減去9月30日的門票收入即可.
解:(1)10月1日:2.2萬人;10月2日:3萬人;10月3日:3.4萬人;10月4日:3萬人;10月5日:2.4萬人;10月6日:2.6萬人;10月7日:1.2萬人;
答:旅游人數(shù)最多的一天是10月3日,達(dá)到3.4萬人.
(2)黃金周期間總收入為:10×(2.2+3+3.4+3+2.4+2.6+1.2)=178萬元,
(萬元)
答:平均每天門票多收入萬元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,,結(jié)論:①;②;③;④,其中正確的是有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊三角形中點(diǎn)是邊上的一點(diǎn),點(diǎn)是邊上的一點(diǎn),連接以為邊作等邊三角形連接.
如圖1,當(dāng)點(diǎn)與點(diǎn)重合時(shí),
找出圖中的一對全等三角形,并證明;
;
如圖2,若請計(jì)算的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A點(diǎn)的坐標(biāo)為(a,6),AB⊥x軸于點(diǎn)B,cos∠OAB═,反比例函數(shù)y=的圖象的一支分別交AO、AB于點(diǎn)C、D.延長AO交反比例函數(shù)的圖象的另一支于點(diǎn)E.已知點(diǎn)D的縱坐標(biāo)為.
(1)求反比例函數(shù)的解析式;
(2)求直線EB的解析式;
(3)求S△OEB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對稱軸為直線x=1的拋物線y=x2﹣bx+c與x軸交于A(x1,0)、B(x2,0)(x1<x2)兩點(diǎn),與y軸交于C點(diǎn),且+=﹣.
(1)求拋物線的解析式;
(2)拋物線頂點(diǎn)為D,直線BD交y軸于E點(diǎn);
①設(shè)點(diǎn)P為線段BD上一點(diǎn)(點(diǎn)P不與B、D兩點(diǎn)重合),過點(diǎn)P作x軸的垂線與拋物線交于點(diǎn)F,求△BDF面積的最大值;
②在線段BD上是否存在點(diǎn)Q,使得∠BDC=∠QCE?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠MON=90,A是∠MON內(nèi)部的一點(diǎn),過點(diǎn)A作AB⊥ON,垂點(diǎn)為點(diǎn)B,AB=3厘米,OB=4厘米,動(dòng)點(diǎn)E、F同時(shí)從O點(diǎn)出發(fā),點(diǎn)E以1.5厘米/秒的速度沿ON方向運(yùn)動(dòng),點(diǎn)F以2厘米/秒的速度沿OM方向運(yùn)動(dòng),EF與OA交于點(diǎn)C,連接AE,當(dāng)點(diǎn)E到達(dá)點(diǎn)B時(shí),點(diǎn)F隨之停止運(yùn)動(dòng)。設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0)。
(1)當(dāng)t=1秒時(shí),ΔEOF與ΔABO是否相似?請說明理由。
(2)在運(yùn)動(dòng)過程中,不論t取何值時(shí),總有EF⊥OA,為什么?
(3)連接AF,在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻t,使得SΔAEF=S四邊形ABOF ?若存在,請求出此時(shí)t的值;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OP平分∠MON,A是邊OM上一點(diǎn),以點(diǎn)A為圓心、大于點(diǎn)A到ON的距離為半徑作弧,交ON于點(diǎn)B、C,再分別以點(diǎn)B、C為圓心,大于BC的長為半徑作弧,兩弧交于點(diǎn)D、作直線AD分別交OP、ON于點(diǎn)E、F.若∠MON=60°,EF=1,則OA=__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有實(shí)數(shù)根.
(1)求k的取值范圍;
(2)若此方程的兩實(shí)數(shù)根x1,x2滿足x12+x22=11,求k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com