【題目】下列命題中,假命題是( )
A. 兩組對角分別相等的四邊形是平行四邊形
B. 有一條對角線與一組鄰邊構(gòu)成等腰三角形的平行四邊形是菱形
C. 一組鄰邊互相垂直,兩組對邊分別平行的四邊形是矩形
D. 有一組鄰邊相等且互相垂直的平行四邊形是正方形
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列有關(guān)圓的一些結(jié)論:①與半徑長相等的弦所對的圓周角是30°;②圓內(nèi)接正六邊形的邊長與該圓半徑相等;③垂直于弦的直徑平分這條弦;④平分弦的直徑垂直于弦.其中正確的是( )
A. ①②③ B. ①③④ C. ②③ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩組數(shù)據(jù):a1,a2,a3,a4,a5和a1-1,a2-1,a3-1,a4-1,a5-1,下列判斷中錯(cuò)誤的是( )
A. 平均數(shù)不相等,方差相等 B. 中位數(shù)不相等,標(biāo)準(zhǔn)差相等
C. 平均數(shù)相等,標(biāo)準(zhǔn)差不相等 D. 中位數(shù)不相等,方差相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,點(diǎn)D在邊BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圓.
(1)求證:AC是⊙O的切線;
(2)當(dāng)BD是⊙O的直徑時(shí)(如圖2),求∠CAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線MN與直線AB、CD分別交于點(diǎn)E、F,∠1與∠2互補(bǔ).
(1)試判斷直線AB與直線CD的位置關(guān)系,并說明理由;
(2)如圖2,∠BEF與∠EFD的角平分線交于點(diǎn)P,EP與CD交于點(diǎn)G,點(diǎn)H是MN上一點(diǎn),且GH⊥EG,求證:PF∥GH;
(3)如圖3,在(2)的條件下,連接PH,K是GH上一點(diǎn)使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請求出其值;若變化,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算(―xy)3·(7xy2―9x2y)正確的是( )
A.―7x2y 5+9x3y4
B.7x2y5―9x3y4
C.―7x4y5+9x5y4
D.7x4y5+9x5y4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某賓館有50個(gè)房間供游客居住,當(dāng)每個(gè)房間定價(jià)120元時(shí),房間會(huì)全部住滿,當(dāng)每個(gè)房間每天的定價(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑。如果游客居住房間,賓館需對每個(gè)房間每天支出20元的各種費(fèi)用,設(shè)每個(gè)房間定價(jià)增加10 x元(x為整數(shù))。
(1)(2分)直接寫出每天游客居住的房間數(shù)量y與x的函數(shù)關(guān)系式。
(2)(4分)設(shè)賓館每天的利潤為W元,當(dāng)每間房價(jià)定價(jià)為多少元時(shí),賓館每天所獲利潤最大,最大利潤是多少?
(3)(4分)某日,賓館了解當(dāng)天的住宿的情況,得到以下信息:①當(dāng)日所獲利潤不低于5000元,②賓館為游客居住的房間共支出費(fèi)用沒有超過600元,③每個(gè)房間剛好住滿2人。問:這天賓館入住的游客人數(shù)最少有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程(k-1)x2+2kx+2=0
(1)求證:無論k為何值,方程總有實(shí)數(shù)根。
(2)設(shè)x1,x2是方程(k-1)x2+2kx+2=0的兩個(gè)根,記S=++ x1+x2,S的值能為2嗎?若能,求出此時(shí)k的值。若不能,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知△ABC和△DCE均是等邊三角形,點(diǎn)B、C、E在同一條直線上,AE與BD交于點(diǎn)O,AE與CD交于點(diǎn)G,AC與BD交于點(diǎn)F,連結(jié)OC、FG,則下列結(jié)論:①AE=BD;②AG=BF;③; ④圖中共有4對全等三角形,其中正確結(jié)論的個(gè)數(shù)( )
A. 3個(gè) B. 2個(gè) C. 1個(gè) D. 4個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com