【題目】如圖,在正方形網(wǎng)格中,、、均為格點(格點是指每個小正方形的頂點),將向下平移6個單位得到.利用網(wǎng)格點和直尺畫圖:
(1)在網(wǎng)格中畫出;
(2)畫出邊上的中線,邊上的高線;
(3)若的邊、分別與的邊、垂直,則的度數(shù)是 .
【答案】(1)見解析;(2)180°.
【解析】
(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C向下平移6個單位的對應(yīng)點A′、B′、C′的位置,然后順次連接即可;
(2)根據(jù)四邊形的內(nèi)角和及垂直的定義解答即可;
(1)如圖所示:直接把點平移,然后連接.
(2)如圖所示:找AC的中點D,連接BD即可,延長AB過點C做垂線.
(3) 分兩種情況解答:
①如圖所示:
∵∠CAB=45°, ∠AFP=∠AEP=90°, ∴∠MPN=360°-∠AFP-∠AEP-∠CAB=360°-90°-90°-45°=135°;
②如圖所示:
∵∠CAB=45°, ∠AFP=∠AEP=90°,,∠AOE=∠POF,,
∴360°-∠AFP-∠POF=360°-∠AEP -∠AOE, ∴∠MPN=∠CAB=45°,
綜上所述:∠MPN的度數(shù)為:45°或135°.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,△ABC的三個頂點分別是A(-2,0),B(0,3),C(3,0).
(1)在所給的圖中,畫出這個平面直角坐標系;
(2)點A經(jīng)過平移后對應(yīng)點為D(3,-3),將△ABC作同樣的平移得到△DEF,點B的對應(yīng)點為點E,畫出平移后的△DEF;
(3)在(2)的條件下,點M在直線CD上,若DM=2CM,直接寫出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)
⑵-32×2+3×(-2)2
(3)
(4)
(5)已知(x-1)2=4,求x的值.
(6)一個正數(shù)的兩個平方根分別為a+3和2a+3,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)解不等式2(1﹣x)<5﹣3x
(2)求不等式的正整數(shù)解
(3)解不等式組
(4)解不等式組,并把解集在數(shù)軸上表示出來.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在長方體中,為平面直角坐標系的原點,,兩點的坐標分別為,,點在第一象限.
(1) 寫出點坐標;
(2) 若過點的直線,且把分為:兩部分,求出點的坐標;
(3) 在(2)的條件下,求出四邊形的面積;
(4) 若點是射線上的點,請直接寫出,之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人分別騎自行車和摩托車,從同一地點沿相同的路線前往距離80km的某地,圖中l1,l2分別表示甲、乙兩人離開出發(fā)地的距離s(km)與行駛時間t(h)之間的函數(shù)關(guān)系.請根據(jù)圖象解答下列問題:
(1)甲、乙兩人誰到達目的地較早?早多長時間?
(2)分別求甲、乙兩人行駛過程中s與t的函數(shù)關(guān)系式;
(3)試確定當兩輛車都在行駛途中(不包括出發(fā)地和目的地)時,t的取值范圍;并在這一時間段內(nèi),求t為何值時,摩托車行駛在自行車前面?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線,點在上,點、點在上,的角平分線交于點,過點作于點,己知,則的度數(shù)為( )
A. 26°B. 32°C. 36°D. 42°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖的方格中,每個小方格都是邊長為1的正方形,△ABC的三個頂點都在格點上;
(1)建立適當?shù)钠矫嬷苯亲鴺讼,?/span>A(﹣2,﹣1),C(1,﹣1),寫出B點坐標;
(2)在(1)的條件下,將△ABC向右平移4個單位再向上平移2個單位,在圖中畫出平移后的△A′B′C′,并分別寫出A′、B′、C′的坐標;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圖1中ΔABC是等邊三角形,DE是中位線,F是線段BC延長線上一點,且CF=AE,連接BE,EF.
圖1 圖2
(1)求證:BE=EF;
(2)若將DE從中位線的位置向上平移,使點D、E分別在線段AB、AC上(點E與點A不重合),其他條件不變,如圖2,則(1)題中的結(jié)論是否成立?若成立,請證明;若不成立.請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com