如圖,在△ABC中,AB=AC,∠A=36°,BD、CE分別為∠ABC與∠ACB的角平分線,且相交于點F,則圖中的等腰三角形有________個.

8
分析:由在△ABC中,AB=AC,∠A=36°,根據(jù)等邊對等角,即可求得∠ABC與∠ACB的度數(shù),又由BD、CE分別為∠ABC與∠ACB的角平分線,即可求得∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,然后利用三角形內(nèi)角和定理與三角形外角的性質(zhì),即可求得∠BEF=∠BFE=∠ABC=∠ACB=∠CDF=∠CFD=72°,由等角對等邊,即可求得答案.
解答:∵在△ABC中,AB=AC,∠A=36°,
∴∠ABC=∠ACB==72°,
∵BD、CE分別為∠ABC與∠ACB的角平分線,
∴∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,
∴AE=CE,AD=BD,BF=CF,
∴△ABC,△ABD,△ACE,△BFC是等腰三角形,
∵∠BEC=180°-∠ABC-∠BCE=72°,∠CDB=180°-∠BCD-∠CBD=72°,∠EFB=∠DFC=∠CBD+∠BCE=72°,
∴∠BEF=∠BFE=∠ABC=∠ACB=∠CDF=∠CFD=72°,
∴BE=BF,CF=CD,BC=BD=CF,
∴△BEF,△CDF,△BCD,△CBE是等腰三角形.
∴圖中的等腰三角形有8個.
故答案為:8.
點評:此題考查了等腰三角新的判定與性質(zhì)、三角形內(nèi)角和定理以及三角外角的性質(zhì).此題難度不大,解題的關(guān)鍵是求得各角的度數(shù),掌握等角對等邊與等邊對等角定理的應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案