如圖所示,圖1是一個長為2m,寬為2n的長方形,沿圖中的虛線剪成四個全等的小長

方形,再按圖2圍成一個較大的正方形.

 


   (1)請用兩種方法表示圖2中陰影部分的面積(只需表示,不必化簡);

   (2)比較(1)的兩種結果,你能得到怎樣的等量關系?

   (3)請你用(2)中得到的等量關系解決下面問題:如果m-n=4,mn=12,求m+n的值.

解:(1)方法一:∵大正方形的面積為(m+n)2,四個小長方形的面積為4mn,

∴中間陰影部分的面積為S=(m+n)2-4mn.            …………2分

方法二:∵中間小正方形的邊長為m-n,故面積為(m-n)2.   …………4分

(2)(m+n)2-4mn=(m-n)2(或(m+n)2=(m-n)2+4mn). …………6分

(3)由(2)得 (m+n)2-4×12=42,即(m+n)2=64,

m+n=±8.

m、n非負,∴m+n=8.                  …………8分

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

24、如圖所示,圖1是一個長為2m,寬為2n的長方形,沿圖中的虛線剪成四個全等的小長方形,再按圖2圍成一個較大的正方形.

(1)請用兩種方法表示圖2中陰影部分的面積(只需表示,不必化簡);
(2)比較(1)的兩種結果,你能得到怎樣的等量關系?
(3)請你用(2)中得到的等量關系解決下面問題:如果m-n=4,mn=12,求m+n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

28、如圖所示,圖1是一個長為2m,寬為2n的長方形(m>n),沿圖中的虛線剪成四個全等的小長方形,再按圖2圍成一個較大的正方形.
(1)請用兩種方法表示圖中陰影部分的面積(只需表示,不必化簡).
(2)比較(1)中的兩種結果,你能得到怎樣的等量關系?
(3)請用(2)中得到的等量關系解決下面的問題:如果mn=12,m+n=8,求m-n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、如圖所示,圖中是一個立體圖形的三視圖,請你根據(jù)視圖,說出立體圖形的名稱:

對應的立體圖形是
正四棱錐
的三視圖.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖所示,圖1是一個長為2m,寬為2n的長方形(m>n),沿圖中的虛線剪成四個全等的小長方形,再按圖2圍成一個較大的正方形.
(1)請用兩種方法表示圖中陰影部分的面積(只需表示,不必化簡).
(2)比較(1)中的兩種結果,你能得到怎樣的等量關系?
(3)請用(2)中得到的等量關系解決下面的問題:如果mn=12,m+n=8,求m-n的值.

查看答案和解析>>

同步練習冊答案