已知:如圖,AB=BC,以AB為直徑的⊙O交AC于點D,DE是⊙O的切線,過點D作DG⊥AB交圓精英家教網(wǎng)于點G,
(1)求證:DE⊥BC;
(2)若tan∠C=
23
,BE=2,求弦DG的長.
分析:(1)連接OD,根據(jù)切線的性質得OD⊥DE,而∠A=∠ADO,BA=BC,得∠A=∠C,則∠ADO=∠C,得到DO∥BC,即可得到結論;
(2)連接BD,由AB為⊙O的直徑,得到∠ADB=90°,而DG⊥AB,得到DE=EG,∠FDB=∠A=∠C,利用三角函數(shù)的定義得到DG=2DF=
BF
tan∠C
=6
解答:精英家教網(wǎng)(1)證明:連接OD,如圖,
∵DE是⊙O的切線,
∴OD⊥DE,
∵OA=OD,
∴∠A=∠ADO,
∵BA=BC,
∴∠A=∠C
∴∠ADO=∠C,
∴DO∥BC,
∴DE⊥BC;

(2)解:連接BD,
∵AB為⊙O的直徑,
∴∠ADB=90°,
又∵BA=BC,
∴AD=DC,
∴BD平分∠ABC,而DG⊥AB,
∴FB=BE=2,
Rt△DFB中,
∴∠FDB=90°-∠ABD=90°-∠CBD=∠C,
∴DG=2DF=
BF
tan∠C
=6
點評:本題考查了切線的性質:圓心與切點的連線垂直切線;過圓心垂直于切線的直線必過切點;過圓外一點引圓的兩條切線,切線長相等.也考查了平行線的性質以及三角形函數(shù)的定義.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

8、已知:如圖,AB、AC分別切⊙O于B、C,D是⊙O上一點,∠D=40°,則∠A的度數(shù)等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,AB,CD相交于點O,且OA•OD=OB•OC,求證:AC∥DB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,AB是⊙O的直徑,AC是弦,直線EF是過點C的⊙O的切線,AD⊥EF于點D.
(1)求證:∠BAC=∠CAD;
(2)若∠B=30°,AB=12,求
AC
的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

29、已知,如圖,AB∥CD,∠EAB+∠FDC=180°.求證:AE∥FD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,AB=AC,DB=DC,求證:∠B=∠C.

查看答案和解析>>

同步練習冊答案