【題目】如圖,已知∠1=∠2,要說明△ABD≌△ACD,還需從下列條件中選一個(gè),錯(cuò)誤的選法是( )
A. ∠ADB=∠ADCB. ∠B=∠CC. DB=DCD. AB=AC
【答案】C
【解析】
先要確定現(xiàn)有已知在圖形上的位置,結(jié)合全等三角形的判定方法對選項(xiàng)逐一驗(yàn)證,排除錯(cuò)誤的選項(xiàng).本題中C、AB=AC與∠1=∠2、AD=AD組成了SSA是不能由此判定三角形全等的.
解:A、加∠ADB=∠ADC,∵∠1=∠2,AD=AD,∠ADB=∠ADC,∴△ABD≌△ACD(ASA),是正確選法;
B、加∠B=∠C∵∠1=∠2,AD=AD,∠B=∠C,∴△ABD≌△ACD(AAS),是正確選法;
C、加DB=DC,滿足SSA,不能得出△ABD≌△ACD,是錯(cuò)誤選法;
D、加AB=AC,∵∠1=∠2,AD=AD,AB=AC,∴△ABD≌△ACD(SAS),是正確選法.
故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小亮和小芳都想?yún)⒓訉W(xué)校杜團(tuán)組織的暑假實(shí)踐活動,但只有一個(gè)名額,小亮提議用如下的辦法決定誰去等加活動:將一個(gè)轉(zhuǎn)盤9等分,分別標(biāo)上1至9九個(gè)號碼,隨意轉(zhuǎn)動轉(zhuǎn)盤,
若轉(zhuǎn)到2的倍數(shù),小亮去參加活動;轉(zhuǎn)到3的倍數(shù),小芳去參加活動;轉(zhuǎn)到其它號碼則重新特動轉(zhuǎn)盤.
(1)轉(zhuǎn)盤轉(zhuǎn)到2的倍數(shù)的概率是多少?
(2)你認(rèn)為這個(gè)游戲公平嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=﹣+bx+c的圖象經(jīng)過A(2,0)、B(0,﹣6)兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)求當(dāng)x滿足什么條件時(shí),函數(shù)值大于0?;
(3)設(shè)該二次函數(shù)的對稱軸與x軸交于點(diǎn)C,連接BA、BC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),△ABC經(jīng)過平移得到的△A′B′C′,△ABC中任意一點(diǎn)P(x1,y1)平移后的對應(yīng)點(diǎn)為P′(x1+6,y1+4).
(1)請?jiān)趫D中作出△A′B′C′;
(2)寫出點(diǎn)A′、B′、C′的坐標(biāo);
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,BD是⊙O的弦,延長BD到點(diǎn)C,使DC=BD,連接AC,過點(diǎn)D作DE⊥AC于E.
(1)求證:AB=AC;
(2)求證:DE為⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中, AB=10,AD=5 ,CD=12.連接AC,若AC=BC=13,則四邊形ABCD的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,AE⊥BC于點(diǎn)E,F為AB邊上一點(diǎn),連接CF,交AE于點(diǎn)G,CF=CB=AE.
(1)若AB,BC,求CE的長;
(2)求證:BE=CG﹣AG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某基地計(jì)劃新建一個(gè)矩形的生物園地,一邊靠舊墻(墻足夠長),另外三邊用總長54米的不銹鋼柵欄圍成,與墻平行的一邊留一個(gè)寬為2米的出入口,如圖所示,如何設(shè)計(jì)才能使園地的而積最大?下面是兩位學(xué)生爭議的情境:請根據(jù)上面的信息,解決問題:
(1)設(shè)AB=x米(x>0),試用含x的代數(shù)式表示BC的長;
(2)請你判斷誰的說法正確,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,P為邊AB上一點(diǎn).
(1) 如圖1,若∠ACP=∠B,求證:AC2=AP·AB;
(2) 若M為CP的中點(diǎn),AC=2,
① 如圖2,若∠PBM=∠ACP,AB=3,求BP的長;
② 如圖3,若∠ABC=45°,∠A=∠BMP=60°,直接寫出BP的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com