【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,2),△AOB為等邊三角形,P是x軸上一個(gè)動(dòng)點(diǎn)(不與原點(diǎn)O重合),以線段AP為一邊在其右側(cè)作等邊三角形APQ.
(1)求點(diǎn)B的坐標(biāo).
(2)在點(diǎn)P運(yùn)動(dòng)過程中,∠ABQ的大小是否發(fā)生改變?若不改變,求出其大;若改變,請說明理由.
(3)連接OQ,當(dāng)OQ∥AB時(shí),求點(diǎn)P的坐標(biāo).
【答案】(1) 點(diǎn)B的坐標(biāo)為(,1);(2)∠ABQ的大小始終不變,∠ABQ=90°;(3) P的坐標(biāo)為(-,0)
【解析】
(1)過點(diǎn)B作BC⊥x軸于點(diǎn)C,根據(jù)等邊三角形的性質(zhì)可得∠AOB=60°,BO=OA=2,從而求出∠BOC=30°,然后根據(jù)30°所對的直角邊是斜邊的一半和勾股定理即可求出BC和OC,從而求出點(diǎn)B的坐標(biāo);
(2)根據(jù)等邊三角形的性質(zhì)可得AP=AQ,AO=AB,∠PAQ=∠OAB=60°,從而證出∠PAO=∠QAB,然后利用SAS證出△APO≌△AQB,從而得出∠ABQ=∠AOP=90°;
(3)根據(jù)題意,畫出圖形,然后根據(jù)平行線的性質(zhì)可得∠BQO=90°,∠BOQ=∠ABO=60°,從而求出∠OBQ=30°,然后根據(jù)30°所對的直角邊是斜邊的一半和勾股定理即可求出OQ和BQ,再根據(jù)(2)中全等可得OP=BQ,從而求出點(diǎn)P的坐標(biāo).
解:(1)如圖①,過點(diǎn)B作BC⊥x軸于點(diǎn)C.
∵△AOB為等邊三角形,且OA=2,
∴∠AOB=60°,BO=OA=2.
∴∠BOC=30°.
又∵∠OCB=90°,
∴BC=OB=1,OC=.
∴點(diǎn)B的坐標(biāo)為(,1).
(2)∠ABQ的大小始終不變.
∵△APQ,△AOB均為等邊三角形,
∴AP=AQ,AO=AB,∠PAQ=∠OAB=60°.
∴∠PAO=∠QAB.
在△APO與△AQB中,
∴△APO≌△AQB(SAS).
∴∠ABQ=∠AOP=90°.
(3)如圖②,當(dāng)OQ∥AB時(shí),點(diǎn)P在x軸的負(fù)半軸上,點(diǎn)Q在點(diǎn)B的下方,
∵AB∥OQ,
∴∠BQO=180°-∠ABQ=90°,∠BOQ=∠ABO=60°.
∴∠OBQ=30°.
又OB=OA=2,
∴OQ=OB=1,BQ=,
由(2)可知,△APO≌△AQB,
∴OP=BQ=.
∴此時(shí)點(diǎn)P的坐標(biāo)為(-,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示平面直角坐標(biāo)系中,每個(gè)小正方形的邊長均為1,△ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上.
(1)以O為旋轉(zhuǎn)中心,將△ABC逆時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A1B1C1;
(2)畫出△A1B1C1關(guān)于原點(diǎn)對稱的△A2B2C2;
(3)若△ABC內(nèi)有一點(diǎn)P(a,b),結(jié)果上面兩次變換后點(diǎn)P在△A2B2C2中的對應(yīng)點(diǎn)為P′,則點(diǎn)P′的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】萬達(dá)旅行社為吸引市民組團(tuán)去黃山風(fēng)景區(qū)旅游,推出了如下的收費(fèi)標(biāo)準(zhǔn):
宿州高鐵新區(qū)組織員工去黃山風(fēng)景區(qū)旅游,共支付給萬達(dá)旅行社旅游費(fèi)用27 000元,請問該單位這次共有多少員工去黃山風(fēng)景區(qū)旅游?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:
(1)甲登山上升的速度是每分鐘 米,乙在A地時(shí)距地面的高度b為 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)關(guān)系式;
(3)登山多長時(shí)間時(shí),甲、乙兩人距地面的高度差為70米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD中,E,F(xiàn)分別是AB與BC邊上的中點(diǎn),連接AF,DE,BD,交于G,H(如圖所示)。求AG:GH:HF的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)的圖象交軸、軸分別于兩點(diǎn),交直線于。
(1)求點(diǎn)的坐標(biāo);
(2)若,求的值;
(3)在(2)的條件下,是線段上一點(diǎn),軸于,交于,若,求點(diǎn)的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉行全體學(xué)生“漢字聽寫”比賽,每位學(xué)生聽寫漢字39個(gè).隨機(jī)抽取了部分學(xué)生的聽寫結(jié)果,繪制成如下的圖表.
組別 | 正確字?jǐn)?shù)x | 人數(shù) |
A | 0≤x<8 | 10 |
B | 8≤x<16 | 15 |
C | 16≤x<24 | 25 |
D | 24≤x<32 | m |
E | 32≤x<40 | n |
根據(jù)以上信息完成下列問題:
(1)統(tǒng)計(jì)表中的m= ,n= ,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)扇形統(tǒng)計(jì)圖中“C組”所對應(yīng)的圓心角的度數(shù)是 ;
(3)已知該校共有900名學(xué)生,如果聽寫正確的字的個(gè)數(shù)少于24個(gè)定為不合格,請你估計(jì)該校本次聽寫比賽不合格的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角三角形中,,點(diǎn)從開始沿邊向點(diǎn)以的速度移動(dòng),點(diǎn)從點(diǎn)開始沿邊向點(diǎn)以的速度移動(dòng). 分別從同時(shí)出發(fā),當(dāng)一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)則另一動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),
(1)求為何值時(shí),為等腰三角形?
(2)是否存在某一時(shí)刻,使點(diǎn)在線段的垂直平分線上?
(3)點(diǎn)在運(yùn)動(dòng)的過程中,是否存在某時(shí)刻, 直線把的周長分為兩部分?若存在,求出,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com