【題目】如圖,AB是⊙O的弦,過(guò)B作BC⊥AB交⊙O于點(diǎn)C,過(guò)C作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)D,取AD的中點(diǎn)E,過(guò)E作EF∥BC交DC 的延長(zhǎng)線與點(diǎn)F,連接AF并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)G.
求證:(1)FC=FG (2)=BCCG.
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.
【解析】
試題分析:(1)由平行線的性質(zhì)得出EF⊥AD,由線段垂直平分線的性質(zhì)得出FA=FD,由等腰三角形的性質(zhì)得出∠FAD=∠D,證出∠DCB=∠G,由對(duì)頂角相等得出∠GCF=∠G,即可得出結(jié)論;
(2)連接AC,由圓周角定理證出AC是⊙O的直徑,由弦切角定理得出∠DCB=∠CAB,證出∠CAB=∠G,再由∠CBA=∠GBA=90°,證明△ABC∽△GBA,得出對(duì)應(yīng)邊成比例,即可得出結(jié)論.
試題解析:(1)∵EF∥BC,AB⊥BG,∴EF⊥AD,∵E是AD的中點(diǎn),∴FA=FD,∴∠FAD=∠D,∵GB⊥AB,∴∠GAB+∠G=∠D+∠DCB=90°,∴∠DCB=∠G,∵∠DCB=∠GCF,∴∠GCF=∠G,∴FC=FG;
(2)連接AC,如圖所示:
∵AB⊥BG,∴AC是⊙O的直徑,∵FD是⊙O的切線,切點(diǎn)為C,∴∠DCB=∠CAB,∵∠DCB=∠G,∴∠CAB=∠G,∵∠CBA=∠GBA=90°,∴△ABC∽△GBA,∴,∴=BCBG.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖為放置在水平桌面上的臺(tái)燈的平面示意圖,燈臂AO長(zhǎng)為40cm,與水平面所形成的夾角∠OAM為75°.由光源O射出的邊緣光線OC,OB與水平面所形成的夾角∠OCA,∠OBA分別為90°和30°,求該臺(tái)燈照亮水平面的寬度BC(不考慮其他因素,結(jié)果精確到0.1cm.溫馨提示:sin75°≈0.97,cos75°≈0.26,≈1.73).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=3,點(diǎn)D在邊AC上,且AD=2CD,DE⊥AB,垂足為點(diǎn)E,聯(lián)結(jié)CE,求:
(1)線段BE的長(zhǎng);
(2)∠ECB的余切值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,折疊長(zhǎng)方形紙片的一邊AD,使點(diǎn)D落在BC邊上的點(diǎn)F處,已知BC=10cm,AB=8cm,求EC的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在一條東西向的雙軌鐵路上迎面駛來(lái)一快一慢兩列火車,快車長(zhǎng)AB=2(單位長(zhǎng)度),慢車長(zhǎng)CD=4(單位長(zhǎng)度),設(shè)正在行駛途中的某一時(shí)刻,如圖,以兩車之間的某點(diǎn)O為原點(diǎn),取向右方向?yàn)檎较虍?huà)數(shù)軸,此時(shí)快車頭A在數(shù)軸上表示的數(shù)是a,慢車頭C在數(shù)軸上表示的數(shù)是c,且|a+8|與(c﹣16)2互為相反數(shù).
溫馨提示:忽略兩輛火車的車身及雙鐵軌的寬度.
(1)求此時(shí)刻快車頭A與慢車頭C之間相距 單位長(zhǎng)度.
(2)從此時(shí)刻開(kāi)始,若快車AB以6個(gè)單位長(zhǎng)度/秒的速度向右勻速繼續(xù)行駛,同時(shí)慢車CD以2個(gè)單位長(zhǎng)度/秒的速度向左勻速繼續(xù)行駛,再行駛 秒兩列火車的車頭A、C相距8個(gè)單位長(zhǎng)度.
(3)在(2)中快車、慢車速度不變的情況下,此時(shí)在快車AB上有一位愛(ài)動(dòng)腦筋的七年級(jí)學(xué)生乘客P,他發(fā)現(xiàn)行駛中有一段時(shí)間t秒鐘內(nèi),他的位置P到兩列火車頭A、C的距離和加上到兩列火車尾B、D的距離和是一個(gè)不變的值(即PA+PC+PB+PD為定值).則這段時(shí)間t是 秒,定值是 單位長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com