在Rt△ABC中,∠BAC=90°,AB=AC=2,點D在BC所在的直線上運動,作∠ADE=45°(A,D,E按逆時針方向).
(1)如圖1,若點D在線段BC上運動,DE交AC于E.
①求證:△ABD∽△DCE;
②當△ADE是等腰三角形時,求AE的長.
(2)①如圖2,若點D在BC的延長線上運動,DE的反向延長線與AC的延長線相交于點E,是否存在點D,使△ADE'是等腰三角形?若存在,寫出所有點D的位置;若不存在,請簡要說明理由;
②如圖3,若點D在BC的反向延長線上運動,是否存在點D,使△ADE是等腰三角形?若存在,寫出所有點D的位置;若不存在,請簡要說明理由.

解:(1)①由∠BAC=90°,AB=AC,推出∠B=∠C=45°.
由∠BAD+∠ADB=135°,∠ADB+∠EDC=135°得到∠BAD=∠EDC.
推出△ABD∽△DCE.

②分三種情況:
(。┊擜D=AE時,∠ADE=∠AED=45°時,得到∠DAE=90°,點D、E分別與B、C重合,所以AE=AC=2.
(ⅱ)當AD=DE時,由①知△ABD∽△DCE,
又AD=DE,知△ABD≌△DCE.
所以AB=CD=2,故BD=CE=2,
所以AE=AC-CE=4-2
(ⅲ)當AE=DE時,有∠EAD=∠ADE=45°=∠C,
故∠ADC=∠AED=90°.
所以DE=AE=AC=1.

(2)①存在(只有一種情況).
由∠ACB=45°推出∠CAD+∠ADC=45°.
由∠ADE=45°推出∠DAC+∠DE′A=45°.
從而推出∠ADC=∠DE′A.證得△ADC∽△AE′D.
所以,又AD=DE′,所以DC=AC=2.
②不存在.
因為D和B不重合,
所以∠AED<45°,∠ADE=45°,
∠DAE>90度.
所以AD≠AE,
同理可得:AE≠DE.
分析:(1)由∠ADB+∠BAD=135°,∠ADB+∠CDE=135°,得出∠BAD=∠CDE;第二問分AD=AE、AD=DE、AE=DE三種情況討論.
(2)存在,可證△ADC∽△AE′D,第二小題不存在(矛盾的結(jié)論).
點評:考查相似三角形的判定和性質(zhì),相似三角形和全等三角形的轉(zhuǎn)化.分情況討論等腰三角形的可能性.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一點,以BD為直徑的⊙O切AC于E,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠C=90°,AB=12,點D是AB的中點,點O是△ABC的重心,則OD的長為(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在Rt△ABC中,已知a及∠A,則斜邊應(yīng)為(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求畫出圖形)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,則AC:BC的值為(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步練習冊答案