【題目】如圖,已知∠A90°+x°,∠B90°﹣x°,∠CED90°,4C﹣∠D30°,射線EFAC

1)判斷射線EFBD的位置關(guān)系,并說明理由;

2)求∠C,∠D的度數(shù).

【答案】1EFBD,見解析;(2

【解析】

1)由∠A+B180°,得到ACBD,由EFAC,得到EFBD.

2)由已知條件得到∠C+D90°,又因?yàn)?/span>4C﹣∠D30°,由兩式可得∠C,∠D的度數(shù).

1EFBD,

∵∠A+B=(90+x°+90x°180°

ACBD,

EFAC

EFBD;

2)∵ACEFBD,

∴∠CEF=∠C,∠DEF=∠D,

∵∠CED90°

∴∠C+D90°,

聯(lián)立,

解得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC,DE垂直平分AB ,分別交AB、BC于點(diǎn)D 、E,MN垂直平分AC,分別交AC、BC于點(diǎn)M、N,連接AE,AN.

(1)如圖1,若∠BAC= 100°,求∠EAN的度數(shù);

(2)如圖2,若∠BAC=70°,求∠EAN的度數(shù);

(3)若∠BAC=a(a≠90°),請直接寫出∠EAN的度數(shù). (用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店經(jīng)銷一種成本為每千克40元的水產(chǎn)品,據(jù)市場分析,若按每千克50元銷售,一個(gè)月能售出500千克.若銷售價(jià)每漲1元,則月銷售量減少10千克.

(1)要使月銷售利潤達(dá)到最大,銷售單價(jià)應(yīng)定為多少元?

(2)要使月銷售利潤不低于8000元,請結(jié)合圖象說明銷售單價(jià)應(yīng)如何定?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知APB=30°,OP=3cm,O的半徑為1cm,若圓心O沿著BP的方向在直線BP上移動.

(Ⅰ)當(dāng)圓心O移動的距離為1cm時(shí),則O與直線PA的位置關(guān)系是

(Ⅱ)若圓心O的移動距離是d,當(dāng)O與直線PA相交時(shí),則d的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了加強(qiáng)學(xué)生的安全意識,某校組織了學(xué)生參加安全知識競賽,從中抽取了部分學(xué)生成績進(jìn)行統(tǒng)計(jì),并按照成績從低到高分成A,B,C,DE五個(gè)小組,繪制統(tǒng)計(jì)圖如下(未完成),解答下列問題:

1)樣本容量為  ,頻數(shù)分布直方圖中a  ;

2)扇形統(tǒng)計(jì)圖中D小組所對應(yīng)的扇形圓心角為n°,求n的值并補(bǔ)全頻數(shù)分布直方圖;

3)若成績在80分以上(不含80分)為優(yōu)秀,全校共有2000名學(xué)生,估計(jì)成績優(yōu)秀的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)在函數(shù)的圖象上.當(dāng)時(shí),過點(diǎn)P分別作x軸、y軸的垂線,垂足為點(diǎn)A、B;過點(diǎn)Q分別作x軸、y軸的垂線,垂足為點(diǎn)C、DQDPA于點(diǎn)E.隨著m的增大,四邊形ACQE的面積

A. 減小B. 增大C. 先減小后增大D. 先增大后減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列四項(xiàng)調(diào)查中,方式正確的是  

A. 對某類煙花爆竹燃放安全情況,采用全面調(diào)查的方式

B. 了解某班同學(xué)每周鍛煉的時(shí)問,采用全面調(diào)查的方式

C. 為保證運(yùn)載火箭的成功發(fā)射,對其所有的零部件采用抽樣調(diào)查的方式

D. 了解某省中學(xué)生旳視力情況,采用全面調(diào)查的方式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣4x軸交于A4,0)、B﹣2,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)P是線段AB上一動點(diǎn)(端點(diǎn)除外),過點(diǎn)PPD∥AC,交BC于點(diǎn)D,連接CP

1)求該拋物線的解析式;

2)當(dāng)動點(diǎn)P運(yùn)動到何處時(shí),BP2=BDBC;

3)當(dāng)△PCD的面積最大時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程:

(1)2x2-4x-1=0(配方法);

(2)(x+1)2=6x+6.

查看答案和解析>>

同步練習(xí)冊答案