如圖所示,在Rt△ABC中,∠C=90°,∠A=30°.
(1)尺規(guī)作圖:作線段AB的垂直平分線l(保留作圖痕跡,不寫作法);
(2)在已作的圖形中,若l分別交AB、AC及BC的延長(zhǎng)線于點(diǎn)D、E、F,連接BE.
求證:EF=2DE.

【答案】分析:∠A=30°易證∠F=30°,因而EF=2EC.
要證EF=2DE,只要證明EC=DE,而根據(jù)角平分線上的點(diǎn)到角兩邊的距離相等即可得到.
解答:(1)解:直線l即為所求.                             (1分)
分別以AB為圓心,以任意長(zhǎng)為半徑,兩圓相交于兩點(diǎn),連接此兩點(diǎn)即可.
作圖正確.                                           (3分)

(2)證明:在Rt△ABC中,∵∠A=30°,∠ABC=60°.
又∵l為線段AB的垂直平分線,∴EA=EB,(5分)
∴∠EBA=∠A=30°,∠AED=∠BED=60°,
∴∠EBC=30°=∠EBA,∠FEC=60°.
又∵ED⊥AB,EC⊥BC,∴ED=EC.                        (8分)
在Rt△ECF中,∠FEC=60°,∴∠EFC=30°,
∴EF=2EC,∴EF=2ED.                                 (10分)
點(diǎn)評(píng):本題主要考查了直角三角形中有一個(gè)角是30度,30度的銳角所對(duì)的直角邊等于斜邊的一半.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于點(diǎn)D,且AB=4,BD=5,則點(diǎn)D到BC的距離是( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖所示,在Rt△ABC中,∠ACB=90°,CD⊥AB,∠A=55°,則∠DCB=
55
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、如圖所示,在Rt△ABC中,∠C=90°,∠A=30°.作AB的中垂線l分別交AB、AC及BC的延長(zhǎng)線于點(diǎn)D、E、F,連接BE. 求證:EF=2DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在Rt△ABC中,∠C=90°,AC=6,sinB=
3
5
,若以C為圓心,R為半徑所得的圓與斜邊AB只有一個(gè)公共點(diǎn),則R的取值范圍是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在Rt△ABC中,AD平分∠BAC,交BC于D,CH⊥AB于H,交AD于F,DE⊥AB垂足為E,求證:四邊形CFED是菱形.

查看答案和解析>>

同步練習(xí)冊(cè)答案