如下圖,已知在Rt△ABC中,∠ACB=Rt∠,AB=4,分別以AC,BC為直徑作半圓,面積分別記為S1,S2,則S1S2的值等于________

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知:AC⊥AB,BD⊥AB,且AC=BE,AE=BD,求證:△CDE是等腰直角三角形.
證明:∵AC⊥AB,BD⊥AB∴∠CAE=∠DBE=90°
∵AC=BE,AE=BD∴△ACE≌△BED
∴CE=DE且∠ACE=∠BED
∵∠ACE+∠AEC=90°∴∠AEC+∠BED=90°
∴∠CED=90°∴△CED為等腰直角三角形
利用上題的解題思路解答下列問(wèn)題:
在Rt△ABC中,∠C=90°,D,E分別為CB,CA延長(zhǎng)線上的點(diǎn),BE與AD的交點(diǎn)為P.
(1)若BD=AC,AE=CD,在下圖中畫出符合題意的圖形,求出∠APE的度數(shù);
(2)若AC=
3
BD,CD=
3
AE,則∠APE=
 
°.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:新教材完全解讀 九年級(jí)數(shù)學(xué) 下冊(cè)(配北師大版新課標(biāo)) 北師大版新課標(biāo) 題型:022

如下圖所示,在Rt△ABC中,已知∠B=30°,∠C=90°,AD平分∠BAC交BC于D,若AB=4,則AD=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知:AC⊥AB,BD⊥AB,且AC=BE,AE=BD,求證:△CDE是等腰直角三角形;

證明:∵AC⊥AB,BD⊥AB    ∴∠CAE=∠DBE=90°

∵AC= BE,AE=BD    ∴△ACE≌△BED

          ∴CE=DE且∠ACE=∠BED

          ∵∠ACE+∠AEC=90°  ∴∠AEC+∠BED=90°

          ∴∠CED=90°        ∴△CED為等腰直角三角形

利用上題的解題思路解答下列問(wèn)題:

在Rt△ABC中,∠C=90°,D,E分別為CB,CA延長(zhǎng)線上的點(diǎn),BE與AD的交點(diǎn)為P.

1.若BD=AC,AE=CD,在下圖中畫出符合題意的圖形,求出∠APE的度數(shù);

2.若AC=BD,CD=AE,則∠APE=__________°

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年江蘇省九年級(jí)中考模擬數(shù)學(xué)試卷2 題型:解答題

如圖,已知:AC⊥AB,BD⊥AB,且AC=BE,AE=BD,求證:△CDE是等腰直角三角形;

證明:∵AC⊥AB,BD⊥AB    ∴∠CAE=∠DBE=90°

∵AC= BE,AE=BD     ∴△ACE≌△BED

          ∴CE=DE且∠ACE=∠BED

          ∵∠ACE+∠AEC=90°  ∴∠AEC+∠BED=90°

          ∴∠CED=90°         ∴△CED為等腰直角三角形

利用上題的解題思路解答下列問(wèn)題:

在Rt△ABC中,∠C=90°,D,E分別為CB,CA延長(zhǎng)線上的點(diǎn),BE與AD的交點(diǎn)為P.

1.若BD=AC,AE=CD,在下圖中畫出符合題意的圖形,求出∠APE的度數(shù);

2.若AC=BD,CD=AE,則∠APE=__________°

 

查看答案和解析>>

同步練習(xí)冊(cè)答案