【題目】在直線L上依次擺放著七個(gè)正方形,已知斜放置的三個(gè)正方形的面積分別為1、2、3,正放置的四個(gè)正方形的面積依次是S1、S2、S3、S4 , 則S1+2S2+2S3+S4=( )
A.5
B.4
C.6
D.10
【答案】C
【解析】解:如圖,∵圖中的四邊形為正方形, ∴∠ABD=90°,AB=DB,
∴∠ABC+∠DBE=90°,
∵∠ABC+∠CAB=90°,
∴∠CAB=∠DBE,
∵在△ABC和△BDE中,
,
∴△ABC≌△BDE(AAS),
∴AC=BE,
∵DE2+BE2=BD2 ,
∴ED2+AC2=BD2 ,
∵S1=AC2 , S2=DE2 , BD2=1,
∴S1+S2=1,
同理可得S2+S3=2,S3+S4=3,
∴S1+2S2+2S3+S4=1+2+3=6.
故選C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識(shí),掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對(duì)正方形的性質(zhì)的理解,了解正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算
(1)10﹣(﹣5)+(﹣9)
(2)(﹣3)×(﹣9)+(﹣5)
(3)
(4)﹣12014÷(﹣5)2×(﹣ )﹣|0.8﹣1|.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果將四根木條首尾相連,在相連處用螺釘連接,就能構(gòu)成一個(gè)平面圖形.
(1)若固定三根木條AB,BC,AD不動(dòng),AB=AD=2cm,BC=5cm,如圖,量得第四根木條CD=5cm,判斷此時(shí)∠B與∠D是否相等,并說明理由.
(2)若固定一根木條AB不動(dòng),AB=2cm,量得木條CD=5cm,如果木條AD,BC的長度不變,當(dāng)點(diǎn)D移到BA的延長線上時(shí),點(diǎn)C也在BA的延長線上;當(dāng)點(diǎn)C移到AB的延長線上時(shí),點(diǎn)A、C、D能構(gòu)成周長為30cm的三角形,求出木條AD,BC的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,OM⊥AB,NO⊥CD,∠1= ∠BOC.
(1)求∠1的大小;
(2)求∠BON的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,EF∥AD,∠1=∠2,∠BAC=80°.將求∠AGD的過程填寫完整.
解:因?yàn)镋F∥AD,
所以∠2=().
又因?yàn)椤?=∠2,
所以∠1=∠3().
所以AB∥().
所以∠BAC+=180°().
因?yàn)椤螧AC=80°,
所以∠AGD= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC , D為邊BC上一點(diǎn),以AB、BD為鄰邊作平行四邊形ABDE , 連接AD、EC . 若BD=CD , 求證:四邊形ADCE是矩形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com