【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點(diǎn)E,F分別在AD,BC上,將紙片ABCD沿直線EF折疊,點(diǎn)C落在AD上的一點(diǎn)H處,點(diǎn)D落在點(diǎn)G處,有以下四個結(jié)論:①HE=HF;②EC平分∠DCH;③線段BF的取值范圍為3≤BF≤4;④當(dāng)點(diǎn)H與點(diǎn)A重合時,EF=2.以上結(jié)論中,你認(rèn)為正確的有( 。﹤.
A. 1個 B. 2個 C. 3個 D. 4個
【答案】C
【解析】試題分析:∵FH與CG,EH與CF都是矩形ABCD的對邊AD、BC的一部分,∴FH∥CG,EH∥CF,
∴四邊形CFHE是平行四邊形,由翻折的性質(zhì)得,CF=FH,∴四邊形CFHE是菱形,∴①正確;
∴∠BCH=∠ECH,∴只有∠DCE=30°時EC平分∠DCH,∴②錯誤;
點(diǎn)H與點(diǎn)A重合時,設(shè)BF=x,則AF=FC=8-x,在Rt△ABF中,,
即,解得x=3,點(diǎn)G與點(diǎn)D重合時,CF=CD=4, ∴BF=4,
∴線段BF的取值范圍為3≤BF≤4,∴③正確;
過點(diǎn)F作FM⊥AD于M,則ME=(8-3)-3=2,由勾股定理得EF=2,∴④正確;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖 a,若 AB∥CD,點(diǎn) P 在 AB、CD 外部,則∠BPD、∠B、∠D 之間有何數(shù)量關(guān)系?
把下面的解答填上根據(jù):
解:∠B=∠BPD+∠PDC.
理由:作PE∥AB
∵ AB∥CD ( )
∴AB∥CD∥PE ( )
∴∠B=∠BPE, ∠D=∠DPE ( )
∵∠BPE=∠BPD+∠DPE
∴∠B=∠BPD+∠PDC ( )
(2)若AB∥CD,將點(diǎn)P移到AB、CD內(nèi)部,如圖b,以上結(jié)論是否成立?若成立,說明理由;若不成立,則∠BPD、∠B、∠D 之間有何數(shù)量關(guān)系?請證明你的結(jié)論.
(3)在圖 b 中,將直線 AB 繞點(diǎn)B逆時針方向旋轉(zhuǎn)一定角度交直線 CD 于點(diǎn) Q,如圖 c,則∠BPD、∠B、∠D、∠BQD 之間滿足的數(shù)量關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同一平面內(nèi)有四條直線a、b、c、d,若a∥b,a⊥c,b⊥d,則直線c、d的位置關(guān)系為( )
A. 互相垂直 B. 互相平行 C. 相交 D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】⊙O的半徑為7cm,點(diǎn)P到圓心O的距離OP=10cm,則點(diǎn)P與⊙O的位置關(guān)系為( 。
A. 點(diǎn)P在圓上 B. 點(diǎn)P在圓內(nèi) C. 點(diǎn)P在圓外 D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對點(diǎn)P(x,y)的一次操作變換記為P1(x,y),定義其變換法則如下:P1(x,y)=(x+y,x﹣y),且規(guī)定Pn(Pn+1(x,y))(n為大于1的整數(shù)).如P1(1,2)=(3,﹣1),P2(1,2)=P1(P1(1,2))=P1(3,﹣1)=(2,4),P3(1,2)=P1(P2(1,2))=P1(2,4)=(6,﹣2),則P2016(0,﹣2)=( )
A. (0,21008) B. (0,﹣21008) C. (0,21009) D. (0,﹣21009)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com