在⊙O中,弦AB的垂直平分線交⊙O于C,D兩點(diǎn),AB=8,弦AC=5,求⊙O的直徑.
【答案】分析:先由勾股定理求得CE,再由Rt△ACE,求得⊙O,的半徑,從而得出直徑.
解答:解:設(shè)AB,CD相交于E,在Rt△ACE中,CE==3,
連接AO,得AO2=AE2+OE2
設(shè)AO=R,則有R2=42+(R-3)2,R=,
∴⊙O的直徑為
點(diǎn)評(píng):本題考查了勾股定理和垂徑定理,解答這類題一些學(xué)生不會(huì)綜合運(yùn)用所學(xué)知識(shí)解答問(wèn)題,不知從何處入手造成錯(cuò)解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、小明學(xué)習(xí)了垂徑定理,做了下面的探究,請(qǐng)根據(jù)題目要求幫小明完成探究.
(1)更換定理的題設(shè)和結(jié)論可以得到許多真命題.如圖1,在⊙0中,C是劣弧AB的中點(diǎn),直線CD⊥AB于點(diǎn)E,則AE=BE.請(qǐng)證明此結(jié)論;
(2)從圓上任意一點(diǎn)出發(fā)的兩條弦所組成的折線,成為該圓的一條折弦.如圖2,PA,PB組成⊙0的一條折弦.C是劣弧AB的中點(diǎn),直線CD⊥PA于點(diǎn)E,則AE=PE+PB.可以通過(guò)延長(zhǎng)DB、AP相交于點(diǎn)F,再連接AD證明結(jié)論成立.請(qǐng)寫(xiě)出證明過(guò)程;
(3)如圖3,PA.PB組成⊙0的一條折弦,若C是優(yōu)弧AB的中點(diǎn),直線CD⊥PA于點(diǎn)E,則AE,PE與PB之間存在怎樣的數(shù)量關(guān)系?寫(xiě)出結(jié)論,不必證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在直徑為50cm的圓中,弦AB為40cm,弦CD為48cm,且AB∥CD,求AB與CD之間距離.
解:如圖所示,過(guò)O作OM⊥AB,
∵AB∥CD,∴ON⊥CD.
在Rt△BMO中,BO=25cm.
由垂徑定理得BM=
1
2
AB=
1
2
×40=20cm,
∴OM=
OB2-BM2
=
252-202
=15cm.
同理可求ON=
OC2-CN2
=
252-242
=7cm,
所以MN=OM-ON=15-7=8cm.
以上解答有無(wú)漏解,漏了什么解,請(qǐng)補(bǔ)上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在⊙O中,AB是非直徑的弦,直徑CD交AB于M,如果AC=CB,則由垂徑定理可得
AB⊥CD
AB⊥CD
、
AE=BE
AE=BE
、
AD
=
BD
AD
=
BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在直徑為50cm的圓中,弦AB為40cm,弦CD為48cm,且AB∥CD,求AB與CD之間距離.
解:如圖所示,過(guò)O作OM⊥AB,
∵AB∥CD,∴ON⊥CD.
在Rt△BMO中,BO=25cm.
由垂徑定理得BM=數(shù)學(xué)公式AB=數(shù)學(xué)公式×40=20cm,
∴OM=數(shù)學(xué)公式=15cm.
同理可求ON=數(shù)學(xué)公式=7cm,
所以MN=OM-ON=15-7=8cm.
以上解答有無(wú)漏解,漏了什么解,請(qǐng)補(bǔ)上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:《24.1.1 圓及垂徑定理》2009年同步練習(xí)(解析版) 題型:解答題

在直徑為50cm的圓中,弦AB為40cm,弦CD為48cm,且AB∥CD,求AB與CD之間距離.
解:如圖所示,過(guò)O作OM⊥AB,
∵AB∥CD,∴ON⊥CD.
在Rt△BMO中,BO=25cm.
由垂徑定理得BM=AB=×40=20cm,
∴OM==15cm.
同理可求ON==7cm,
所以MN=OM-ON=15-7=8cm.
以上解答有無(wú)漏解,漏了什么解,請(qǐng)補(bǔ)上.

查看答案和解析>>

同步練習(xí)冊(cè)答案