【題目】對于三個數(shù)a,b,c,M表示a,b,c這三個數(shù)的平均數(shù),min表示a,b,c這三個數(shù)中最小的數(shù),如:
M,min=-1;
M,min=;
解決下列問題:
(1) 填空:min{ a, a-1, a+2 }=______________;
(2) 若min=2,則x的取值范圍是______________;
(3) ①若M=min,那么x=______________;
②根據(jù)①,你發(fā)現(xiàn)結論“若M=min,則______________;(填a,b,c的大小關系);
③運用②解決問題:(寫出求解的過程)
若M=min,
求x+y 的值.
【答案】 a-1 0≤x≤1 ①1 ②a=b=c③x+y=-4.
【解析】試題分析:(1)先比較a, a-1, a+2的大小,再根據(jù)運算規(guī)則即可得出答案;
(2)先根據(jù)運算規(guī)則列出不等式組,再進行求解即可得出答案;
(3)根據(jù)題中規(guī)定的M{a、b、c}表示這三個數(shù)的平均數(shù),min{a、b、c}表示a、b、c這三個數(shù)中的最小數(shù),列出方程組即可求解.
解:(1)∵a-1<a<a+2,
∴min{ a, a-1, a+2 }=a-1;
(2)由題意得:
,
解得:0≤x≤1,
(3)①M{2,x+1,2x}==x+1=min{2,x+1,2x},
∴ ,
∴ ,
∴x=1.
②若M{a,b,c}=min{a,b,c},則a=b=c;
③根據(jù)②得:2x+y+2=x+2y=2x-y,
解得:x=-3,y=-1,
則x+y=-4.
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖是一個組合幾何體,右邊是它的兩種視圖,在右邊橫線上填寫出兩種視圖的名稱;
視圖 視圖
(2)根據(jù)兩種視圖中尺寸(單位:cm),計算這個組合幾何體的表面積.(π取3.14)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】程大位所著《算法統(tǒng)宗》是一部中國傳統(tǒng)數(shù)學重要的著作.在《算法統(tǒng)宗》中記載:“平地秋千未起,踏板離地一尺.送行二步與人齊,五尺人高曾記.仕女佳人爭蹴,終朝笑語歡嬉.良工高士素好奇,算出索長有幾?”【注釋】1步=5尺.
譯文:“當秋千靜止時,秋千上的踏板離地有1尺高,如將秋千的踏板往前推動兩步(10尺)時,踏板就和人一樣高,已知這個人身高是5尺.美麗的姑娘和才子們,每天都來爭蕩秋千,歡聲笑語終日不斷.好奇的能工巧匠,能算出這秋千的繩索長是多少嗎?”
如圖,假設秋千的繩索長始終保持直線狀態(tài),OA是秋千的靜止狀態(tài),A是踏板,CD是地面,點B是推動兩步后踏板的位置,弧AB是踏板移動的軌跡.已知AC=1尺,CD=EB=10尺,人的身高BD=5尺.設繩索長OA=OB=x尺,則可列方程為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,在△ABC中,∠B<∠C,AD平分∠BAC,E的線段AD(除去端點A、D)上一動點,EF⊥BC于點F.
(1)若∠B=40°,∠DEF=10°,求∠C的度數(shù).
(2)當E在AD上移動時,∠B、∠C、∠DEF之間存在怎樣的等量關系?請寫出這個等量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正比例函數(shù)y1=-x與反比例函數(shù)y2=的圖象經(jīng)過A(-2,1)點,求:
(1)反比例函數(shù)的解析式.
(2)正比例與反比例函數(shù)另一個交點B的坐標.
(3)當x在什么范圍,y1=y2,當x在什么范圍,y1<y2,當x在什么范圍,y1>y2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,AB邊上有一動點P,連接PD,線段PD繞點P順時針旋轉90°后,得到線段PE,且PE交BC于F,連接DF,過點E作EQ⊥AB的延長線于點Q.
(1)求線段PQ的長;
(2)問:點P在何處時,△PFD∽△BFP,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】實驗與探究:
()由圖觀察易知關于直線的對稱點的坐標為,請在圖中分別標明、關于直線的對稱點、的位置,并寫出他們的坐標:__________、__________.
歸納與發(fā)現(xiàn):
()結合圖形觀察以上三組點的坐標,你會發(fā)現(xiàn):坐標平面內(nèi)任一點關于第一、三象限的角平分線的對稱點的坐標為__________(不必證明).
運用與拓廣:
()已知兩點、,試在直線上確定一點,使點到、兩點的距離之和最小,并求出點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中國古代數(shù)學家們對于勾股定理的發(fā)現(xiàn)和證明,在世界數(shù)學史上具有獨特的貢獻和地位,體現(xiàn)了數(shù)學研究中的繼承和發(fā)展.現(xiàn)用4個全等的直角三角形拼成如圖所示“弦圖”.Rt△ABC中,∠ACB=90°,若,請你利用這個圖形解決下列問題:
(1)試說明;
(2)如果大正方形的面積是10,小正方形的面積是2,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】你能化簡(x﹣1)(x99+x98+…+…+x+1)嗎?遇到這樣的復雜問題時,我們可以先從簡單的情形入手.然后歸納出一些方法.
(1)分別化簡下列各式:
(x﹣1)(x+1)= ;
(x﹣1)(x2+x+1)= ;
(x﹣1)(x3+x2+x+1)= ;
…
(x﹣1)(x99+x98+…+x+1)= .
(2)請你利用上面的結論計算:
299+298+…+2+1
399+398+…+3+1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com