【題目】如圖,沿矩形ABCD的對角線折疊,先折出折痕AC,再折疊AB,使AB落在對角線AC上,折痕AE,若AD=8,AB=6.則BE=

【答案】3
【解析】解:如圖所示:AB沿AE折疊后點(diǎn)B的對應(yīng)點(diǎn)為F.

由勾股定理得,AC= = =10.

設(shè)BE=x,則CE=8﹣x.

由翻折的性質(zhì)得:BE=EF=x,AF=AB=6,

所以CF=10﹣6=4.

在Rt△CEF中,由勾股定理得,EF2+CF2=CE2,即x2+42=(8﹣x)2,

解得x=3,即BE=3.

所以答案是:3.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解矩形的性質(zhì)的相關(guān)知識(shí),掌握矩形的四個(gè)角都是直角,矩形的對角線相等,以及對翻折變換(折疊問題)的理解,了解折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在正方形ABCD中,點(diǎn)E、F分別在BCCD上,AE = AF

1)求證:BE = DF;

2)連接ACEF于點(diǎn)O,延長OC至點(diǎn)M,使OM = OA,連接EM、FM.判斷四邊形AEMF是什么特殊四邊形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】江南農(nóng)場收割小麥,已知1臺(tái)大型收割機(jī)和3臺(tái)小型收割機(jī)1小時(shí)可以收割小麥1.4公頃,2臺(tái)大型收割機(jī)和5臺(tái)小型收割機(jī)1小時(shí)可以收割小麥2.5公頃.

(1)每臺(tái)大型收割機(jī)和每臺(tái)小型收割機(jī)1小時(shí)收割小麥各多少公頃?

(2)大型收割機(jī)每小時(shí)費(fèi)用為300元,小型收割機(jī)每小時(shí)費(fèi)用為200元,兩種型號的收割機(jī)一共有10臺(tái),要求2小時(shí)完成8公頃小麥的收割任務(wù),且總費(fèi)用不超過5400元,有幾種方案?請指出費(fèi)用最低的一種方案,并求出相應(yīng)的費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,EBC邊一點(diǎn),DE平分∠ADC,EF∥DCAD邊于點(diǎn)F,連結(jié)BD.

(1)求證:四邊形EFCD是正方形;

(2)若BE=1,ED=2,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)準(zhǔn)備在甲乙兩位射箭愛好者中選出一人參加集訓(xùn),兩人各射了5箭,他們的總成績(單位:環(huán))相同.

第1次

第2次

第3次

第4次

第5次

甲成績

9

4

7

4

6

乙成績

7

5

7

a

7

(1)a=__,=____

(2)①分別計(jì)算甲、乙成績的方差.

②請你從平均數(shù)和方差的角度分析,誰將被選中.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“安全教育,警鐘長鳴”,為此,某中學(xué)組織全校1200名學(xué)生參加安全知識(shí)測試,為了解本次測試成績的分布情況,從中隨機(jī)抽取了部分學(xué)生的成績,繪制出如下不完整的統(tǒng)計(jì)圖表:

分段數(shù)

頻數(shù)

頻率

60≤x<70

30

0.15

70≤x<80

60

n

80≤x<90

90≤x<100

20

0.1

合計(jì)

m

1

請根據(jù)以上圖表提供的信息,解答下列問題:
(1)表中m的值為 , n的值為
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)測試成績的中位數(shù)在哪個(gè)分?jǐn)?shù)段?
(4)規(guī)定測試成績80分以上(含80分)為合格,請估計(jì)全校學(xué)生中合格人數(shù)約為多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)最重要的著作,奠定了中國傳統(tǒng)數(shù)學(xué)的基本框架.它的代數(shù)成就主要包括開方術(shù)、正負(fù)術(shù)和方程術(shù).其中,方程術(shù)是《九章算術(shù)》最高的數(shù)學(xué)成就.《九章算術(shù)》中記載:“今有人共買雞,人出九,盈十一;人出六,不足十六.問人數(shù)幾何?”

譯文:“有幾個(gè)人共同出錢買雞,如果每人出九錢,那么多了十一錢;如果每人出六錢,那么少了十六錢.問:有幾個(gè)人共同出錢買雞?設(shè)有x個(gè)人共同買雞,根據(jù)題意列一元一次方程._____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平行四邊形ABCD中,對角線AC、BD交于點(diǎn)O,經(jīng)過點(diǎn)O的直線AD于點(diǎn)E,交BC于點(diǎn)F

1)求證:OE=OF;

2)如圖2,連接AF、CE,當(dāng)AFFC時(shí),在不添加輔助線的情況下,直接寫出等于的線段.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將等邊△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)120得到 EDC,連接AD,BD.

則下列結(jié)論:
①AC=AD;
②BD AC;
③四邊形ACED是菱形.
其中正確的個(gè)數(shù)是( )
A.O
B.1
C.2
D.3

查看答案和解析>>

同步練習(xí)冊答案