【題目】下列分解因式正確的是(
A.﹣a+a3=﹣a(1+a2
B.2a﹣4b+2=2(a﹣2b)
C.a2﹣4=(a﹣2)2
D.a2﹣2a+1=(a﹣1)2

【答案】D
【解析】解:A、﹣a+a3=﹣a(1﹣a2)=﹣a(1+a)(1﹣a),故A選項(xiàng)錯(cuò)誤; B、2a﹣4b+2=2(a﹣2b+1),故B選項(xiàng)錯(cuò)誤;
C、a2﹣4=(a﹣2)(a+2),故C選項(xiàng)錯(cuò)誤;
D、a2﹣2a+1=(a﹣1)2 , 故D選項(xiàng)正確.
故選:D.
根據(jù)提公因式法,平方差公式,完全平方公式求解即可求得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小麗和小明上山游玩,小麗乘纜車,小明步行,兩人相約在山頂?shù)睦|車終點(diǎn)會(huì)合.已知小明行走到纜車終點(diǎn)的路程是纜車到山頂?shù)木路長的2倍,小麗在小明出發(fā)后1小時(shí)才乘上纜車,纜車的平均速度為190m/min.設(shè)小明出發(fā)x min后行走的路程為y m.圖中的折線表示小明在整個(gè)行走過程中y與x的函數(shù)關(guān)系.

(1)小明行走的總路程是m,他途中休息了min.
(2)①當(dāng)60≤x≤90時(shí),求y與x的函數(shù)關(guān)系式;②當(dāng)小麗到達(dá)纜車終點(diǎn)時(shí),小明離纜車終點(diǎn)的路程是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A(0,1),M(3,2),N(4,4) , 動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿y
軸以每秒1個(gè)單位長的速度向上移動(dòng),且過點(diǎn)P的直線l:y=-x+b也隨之移動(dòng),設(shè)移動(dòng)時(shí)間為 t 秒.(直線y = kx+b平移時(shí)k不變)

(1)當(dāng)t=3時(shí),求 l 的解析式;
(2)若點(diǎn)M,N位于l 的異側(cè),確定 t 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)三角形的三條高線交點(diǎn)恰好是此三角形的一個(gè)頂點(diǎn),則此三角形是______三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】[探究函數(shù)的圖象與性質(zhì)]

(1)函數(shù)的自變量的取值范圍是 ;

(2)下列四個(gè)函數(shù)圖象中函數(shù)的圖象大致是 ;

(3)對(duì)于函數(shù),求當(dāng)時(shí), 的取值范圍.

請(qǐng)將下列的求解過程補(bǔ)充完整.

解:∵

.

[拓展運(yùn)用]

(4)若函數(shù),則的取值范圍 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系, 為坐標(biāo)原點(diǎn),點(diǎn),點(diǎn).

(1)求的度數(shù);

(2)如圖1,將⊿繞點(diǎn)順時(shí)針得⊿,當(dāng)恰好落在邊上時(shí),設(shè)⊿的面積為,⊿的面積為,有何關(guān)系?為什么?

(3)若將⊿繞點(diǎn)順時(shí)針旋轉(zhuǎn)到如圖2所示的位置, 的關(guān)系發(fā)生變化了嗎?證明你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】|﹣9|的平方根等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)【問題發(fā)現(xiàn)】

如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點(diǎn)D為BC的中點(diǎn),以CD為一邊作正方形CDEF,點(diǎn)E恰好與點(diǎn)A重合,則線段BE與AF的數(shù)量關(guān)系為   

(2)【拓展研究】

在(1)的條件下,如果正方形CDEF繞點(diǎn)C旋轉(zhuǎn),連接BE,CE,AF,線段BE與AF的數(shù)量關(guān)系有無變化?請(qǐng)僅就圖2的情形給出證明;

(3)【問題發(fā)現(xiàn)】

當(dāng)正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點(diǎn)共線時(shí)候,直接寫出線段AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求證:

(1)△AEF≌△CEB;
(2)AF=2CD.

查看答案和解析>>

同步練習(xí)冊(cè)答案