【題目】如圖,菱形ABCD中的邊長(zhǎng)為1,∠BAD=60°,將菱形ABCD繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)30°得到菱形AB′CD′,B′C′CD于點(diǎn)E,連接AE,CC′,則下列結(jié)論:①ΔAB′EΔADE;②EC=ED;③AECC′;④四邊形AB′ED的周長(zhǎng)為+2.其中正確結(jié)論的個(gè)數(shù)是

A.1B.2C.3D.4

【答案】B

【解析】

連結(jié)對(duì)角線,,∴,根據(jù)菱形ABCD繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)30°得到菱形AB′CD′,得到,,三點(diǎn)共線,,三點(diǎn)共線,

,,并根據(jù)已知和菱形的性質(zhì)可得: ,,∴②不正確;

可根據(jù)條件證明,得到,并由得到,∴①正確;∴的角平分線,

(三線合一)∴③正確;根據(jù),求出,利用

,∴

,

∴四邊形AB′ED的周長(zhǎng)為: ∴④不正確

解:連結(jié)對(duì)角線,∴,

∵菱形ABCD繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)30°得到菱形AB′CD′,

,三點(diǎn)共線,

,,三點(diǎn)共線,

由題目已知和菱形的性質(zhì)可得:

,②不正確;

∴由,

∴①正確;

的角平分線,

(三線合一)

∴③正確;

,

在菱形ABCD中,

∴在中,

,

∴四邊形AB′ED的周長(zhǎng)為:

∴④不正確

綜上所述,正確的有①③,

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(問(wèn)題原型)如圖,在中,對(duì)角線的垂直平分線于點(diǎn),交于點(diǎn),交于點(diǎn).求證:四邊形是菱形.

(小海的證法)證明:

的垂直平分線,

,(第一步)

,(第二步)

.(第三步)

四邊形是平行四邊形.(第四步)

四邊形是菱形. (第五步)

(老師評(píng)析)小海利用對(duì)角線互相平分證明了四邊形是平行四邊形,再利用對(duì)角線互相垂直證明它是菱形,可惜有一步錯(cuò)了.

(挑錯(cuò)改錯(cuò))(1)小海的證明過(guò)程在第________步上開(kāi)始出現(xiàn)了錯(cuò)誤.

2)請(qǐng)你根據(jù)小海的證題思路寫(xiě)出此題的正確解答過(guò)程,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】勝利中學(xué)為豐富同學(xué)們的校園生活,舉行校園電視臺(tái)主待人選拔賽,現(xiàn)將36名參賽選手的成績(jī)(單位:分)統(tǒng)計(jì)并繪制成頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖,部分信息如下:

請(qǐng)根據(jù)統(tǒng)計(jì)圖的信息,解答下列問(wèn)題:

(1)補(bǔ)全頻數(shù)分布直方圖,并求扇形統(tǒng)計(jì)圖中扇形對(duì)應(yīng)的圓心角度數(shù);

(2)成績(jī)?cè)?/span>區(qū)域的選手,男生比女生多一人,從中隨機(jī)抽取兩人臨時(shí)擔(dān)任該校藝術(shù)節(jié)的主持人,求恰好選中一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店銷售一種商品,童威經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):該商品的周銷售量(件)是售價(jià)(元/件)的一次函數(shù),其售價(jià)、周銷售量、周銷售利潤(rùn)(元)的三組對(duì)應(yīng)值如下表:

售價(jià)(元/件)

50

60

80

周銷售量(件)

100

80

40

周銷售利潤(rùn)(元)

1000

1600

1600

注:周銷售利潤(rùn)=周銷售量×(售價(jià)-進(jìn)價(jià))

1)①求關(guān)于的函數(shù)解析式(不要求寫(xiě)出自變量的取值范圍)

②該商品進(jìn)價(jià)是_________/件;當(dāng)售價(jià)是________/件時(shí),周銷售利潤(rùn)最大,最大利潤(rùn)是__________

2)由于某種原因,該商品進(jìn)價(jià)提高了/,物價(jià)部門規(guī)定該商品售價(jià)不得超過(guò)65/件,該商店在今后的銷售中,周銷售量與售價(jià)仍然滿足(1)中的函數(shù)關(guān)系.若周銷售最大利潤(rùn)是1400元,求的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線軸交于點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱,過(guò)點(diǎn)軸的垂線,直線與直線交于點(diǎn).

1)求點(diǎn)的坐標(biāo);

2)如果拋物線與線段有唯一公共點(diǎn),

①求拋物線的對(duì)稱軸,

②求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,E為對(duì)角線BD上的一點(diǎn),點(diǎn)FAD的延長(zhǎng)線上,且∠CEF=90°,EFCDH,分別過(guò)點(diǎn)F,點(diǎn)CECEF的平行線,交于點(diǎn)G.

(1)證明:AE=CE

(2)證明:四邊形ECGF是正方形;

(3)若正方形ABCD的邊長(zhǎng)為,且BE=BC,求此時(shí)ΔEDF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的邊長(zhǎng)為a.直線ybx+cx軸于E,交y軸于F,且ab、c分別滿足﹣(a420c+8.

1)求直線ybx+c的解析式并直接寫(xiě)出正方形OABC的對(duì)角線的交點(diǎn)D的坐標(biāo);

2)直線ybx+c沿x軸正方向以每秒移動(dòng)1個(gè)單位長(zhǎng)度的速度平移,設(shè)平移的時(shí)間為t秒,問(wèn)是否存在t的值,使直線EF平分正方形OABC的面積?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由;

3)點(diǎn)P為正方形OABC的對(duì)角線AC上的動(dòng)點(diǎn)(端點(diǎn)A、C除外),PMPO,交直線ABM,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)為P(2,9),與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C(0,5).

(Ⅰ)求二次函數(shù)的解析式及點(diǎn)A,B的坐標(biāo);

(Ⅱ)設(shè)點(diǎn)Q在第一象限的拋物線上,若其關(guān)于原點(diǎn)的對(duì)稱點(diǎn)Q′也在拋物線上,求點(diǎn)Q的坐標(biāo);

(Ⅲ)若點(diǎn)M在拋物線上,點(diǎn)N在拋物線的對(duì)稱軸上,使得以A,C,M,N為頂點(diǎn)的四邊形是平行四邊形,且AC為其一邊,求點(diǎn)M,N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是圓的直徑,是圓的切線,交圓于點(diǎn),點(diǎn)的中點(diǎn),連接.

1)求證:

2)求證:四點(diǎn)共圓

3滿足什么條件時(shí),經(jīng)過(guò)的圓與相切?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案