【題目】如圖,已知AC∥BD,要使△ABC≌△BAD需再補(bǔ)充一個(gè)條件,下列條件中,不能選擇的是( )

A. BCAD B. AC=BD C. BC=AD D. C=D

【答案】C

【解析】

本題要判定△ABC≌△BAD,已知AC∥BD,即∠CAB=DBA,AB為公共邊,故添加AC=BD或∠DAB=CBA或∠C=D后可分別根據(jù)SAS、ASAAAS判定△ABC≌△BAD

∵AC∥BD,

∴∠CAB=DBA

AB為公共邊,要使△ABC≌△BAD

∴添加AC=BD或∠C=D后可分別根據(jù)SAS、AAS判定△ABC≌△BAD,故BD選項(xiàng)不符合題意;

A、∵BC∥AD

∴∠CBA=DAB,

∴添加BC//AD后可根據(jù)ASA判定△ABC≌△BAD,故A選項(xiàng)不符合題意;

而添加C選項(xiàng)會(huì)出現(xiàn)SSASSA不能證明三角形全等,

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列因式分解的過(guò)程:

①x2-xy+4x-4y=(x2-xy)+(4x-4y)=x(x-y)+4(x-y)=(x-y)(x+4).

②a2-b2-c2+2bc=a2-(b2+c2-2bc)=a2-(b-c)2=(a+b-c)(a-b+c).

題分組后能直接提公因式,第題分組后能直接運(yùn)用公式,仿照上述分解因式的方法,把下列各式分解因式:

(1)ad-ac-bc+bd;

(2)x2-6x+9-y2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】去年春季,蔬菜種植場(chǎng)在15公頃的大棚地里分別種植了茄子和西紅柿,總費(fèi)用是萬(wàn)元其中,種植茄子和西紅柿每公頃的費(fèi)用和每公頃獲利情況如表:

每公頃費(fèi)用萬(wàn)元

每公頃獲利萬(wàn)元

茄子

西紅柿

請(qǐng)解答下列問(wèn)題:

求出茄子和西紅柿的種植面積各為多少公頃?

種植場(chǎng)在這一季共獲利多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:E、F分別是ABCD上的點(diǎn),DE、AF分別交BC于點(diǎn)G、H, AB∥CD,∠A∠D,試說(shuō)明:(1AF∥ED;2∠BED∠A;(3) ∠1∠2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在坐標(biāo)系中放置一菱形OABC,已知∠ABC=60°,點(diǎn)B在y軸上,OA=1,先將菱形OABC沿x軸的正方向無(wú)滑動(dòng)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2017次,點(diǎn)B的落點(diǎn)依次為B1 , B2 , B3 , …,則B2017的坐標(biāo)為( )

A.(1345,0)
B.(1345.5,
C.(1345,
D.(1345.5,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ ABC 和△ADE都是等邊三角形,點(diǎn) B ED 的延長(zhǎng)線上.

1)求證:△ABD≌△ACE

2)求證:AECE=BE

3)求∠BEC 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司招聘職員,對(duì)甲、乙兩位候選人進(jìn)行了面試和筆試,面試中包括形體和口才,筆試中包括專業(yè)水平和創(chuàng)新能力考察,他們的成績(jī)(百分制)如下表:

候選人

面試

筆試

形體

口才

專業(yè)水平

創(chuàng)新能力

86

90

96

92

92

88

95

93

若公司根據(jù)經(jīng)營(yíng)性質(zhì)和崗位要求認(rèn)為:形體、口才、專業(yè)水平、創(chuàng)新能力按照4655的比確定,請(qǐng)計(jì)算甲、乙兩人各自的平均成績(jī),看看誰(shuí)將被錄?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)要求回答問(wèn)題:
(1)【問(wèn)題發(fā)現(xiàn)】
如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點(diǎn)D為BC的中點(diǎn),以CD為一邊作正方形CDEF,點(diǎn)E恰好與點(diǎn)A重合,求線段BE與AF的數(shù)量關(guān)系

(2)【拓展研究】
在(1)的條件下,如果正方形CDEF繞點(diǎn)C旋轉(zhuǎn),連接BE,CE,AF,線段BE與AF的數(shù)量關(guān)系有無(wú)變化?請(qǐng)僅就圖2的情形給出證明;

(3)【問(wèn)題發(fā)現(xiàn)】
當(dāng)正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點(diǎn)共線時(shí)候,直接寫出線段AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一正方體,六個(gè)面上分別寫有數(shù)字1,2,3,4,5,6,有三個(gè)人從不同的角度觀察的結(jié)果如圖.如果記6的對(duì)面的數(shù)字為a,2的對(duì)面的數(shù)字為b,那么a+b的值為( )

A.3
B.7
C.8
D.11

查看答案和解析>>

同步練習(xí)冊(cè)答案