【題目】如圖,在單位為1的方格紙上,△A1A2A3,△A3A4A5,△A5A6A7,…都是斜邊在x軸上,斜邊長分別為2,4,6.…的等腰直角三角形,若△A1A2A3的頂點坐標分別為A1(2,0),A2(1,1),A3(0,0).則依圖中所示規(guī)律,A2020的坐標為( 。
A.(2,﹣1010)B.(2,﹣1008)C.(1010,0)D.(1,1009)
【答案】A
【解析】
根據(jù)腳碼確定出腳碼為偶數(shù)時的點的坐標,得到規(guī)律當腳碼是2、6、10…時,橫坐標為1,縱坐標為腳碼的一半的相反數(shù),當腳碼是4、8、12…時,橫坐標是2,縱坐標為腳碼的一半,然后確定出第2020個點的坐標即可.
解:∵各三角形都是等腰直角三角形,
∴直角頂點的縱坐標的長度為斜邊的一半,
A2(1,﹣1),A4(2,2),A6(1,﹣3),A8(2,4),A10(1,﹣5),A12(2,6),…,
∵2020÷4=505,
∴點A2020在第四象限,橫坐標是2,縱坐標是﹣2020÷2=﹣1010,
∴A2020的坐標為(2,﹣1010).
故選:A.
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中錯誤的是( )
A .在函數(shù)y=-x2中,當x=0時y有最大值0
B.在函數(shù)y=2x2中,當x>0時y隨x的增大而增大
C.拋物線y=2x2,y=-x2,中,拋物線y=2x2的開口最小,拋物線y=-x2的開口最大
D.不論a是正數(shù)還是負數(shù),拋物線y=ax2的頂點都是坐標原點
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以直線AB上一點O為端點作射線OC,使∠BOC=70°,將一個直角三角形的直角頂點放在點O處.(注:∠DOE=90°)
(1)如圖①,若直角三角板DOE的一邊OD放在射線OB上,則∠COE= °;
(2)如圖②,將直角三角板DOE繞點O逆時針方向轉(zhuǎn)動到某個位置,若OC恰好平分∠BOE,求∠COD的度數(shù);
(3)如圖③,將直角三角板DOE繞點O轉(zhuǎn)動,如果OD始終在∠BOC的內(nèi)部,試猜想∠BOD和∠COE有怎樣的數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面文字:
對于(﹣5)+(﹣9)+17 +(﹣3)
可以如下計算:
原式=[(﹣5)+(﹣)]+[(﹣9)+(﹣)]+(17+)+[(﹣3)+(﹣)]
=[(一5)+(﹣9)+17+(一3)]+[(﹣)+(﹣)++(﹣)]=0+(﹣1)
=﹣1
上面這種方法叫拆項法,你看懂了嗎?
仿照上面的方法,請你計算:(﹣1)+(﹣2000)+4000+(﹣1999)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形中,點E是邊AB的中點,延長DE交CB的延長線于點F.
(1)求證:;
(2)若,連接EC,則的度數(shù)是__________________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于A、B兩點.
(1)利用圖中的條件,求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次中學生田徑運動會上,根據(jù)參加男子跳高初賽的運動員的成績(單位:m),繪制出如下的統(tǒng)計圖①和圖②,請根據(jù)相關(guān)信息,解答下列問題:
(Ⅰ)圖1中a的值為 ;
(Ⅱ)求統(tǒng)計的這組初賽成績數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)根據(jù)這組初賽成績,由高到低確定9人進入復賽,請直接寫出初賽成績?yōu)?.65m的運動員能否進入復賽.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,圖形W在坐標軸上的投影長度定義如下:
設(shè)點P,Q是圖形W上的任意兩點.若的最大值為m,則圖形W在x軸上的投影長度=m;若的最大值為n,則圖形W在y軸上的投影長度=n,如下圖,圖形W在x軸上的投影長度==2;在y軸上的投影長度==4.
(1)已知點A(3,3),B(4,1).如圖1所示,若圖形W為△OAB,則=___________ =___________
(2)已知點C(4,0),點D在直線y=-2x+6上,若圖形W為△OCD.當=時,求點D的坐標.
(3)如圖2所示,已知點A(3,0),B(0,4),將△BOA繞點A按順時針方向旋轉(zhuǎn)得△CDA,連接OD,BD.若圖形W為點O.A.C.D.B圍成的多邊形圖象,且∠DOA=∠OBA,直接寫出的值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com