如圖,正方形ABCD的邊長(zhǎng)為1,E、F分別是邊BC和CD上的動(dòng)點(diǎn)(不與正方形的頂點(diǎn)重合),不管E、F怎樣動(dòng),始終保持AE⊥EF.設(shè)BE=x,DF=y,則y是x的函數(shù),函數(shù)關(guān)系式是( 。
A.y=x+1B.y=x-1C.y=x2-x+1D.y=x2-x-1

∵∠BAE和∠EFC都是∠AEB的余角.
∴∠BAE=∠FEC.
∴△ABE△ECF
那么AB:EC=BE:CF,
∵AB=1,BE=x,EC=1-x,CF=1-y.
∴AB•CF=EC•BE,
即1×(1-y)=(1-x)x.
化簡(jiǎn)得:y=x2-x+1.
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

若拋物線y=x2-(2m+4)+m2-10與x軸交于A(x1,0),B(x2,0).頂點(diǎn)為C.
(1)求m的范圍;
(2)若AB=2
2
,求拋物線的解析式;
(3)若△ABC為等邊三角形,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx經(jīng)過圓點(diǎn)O和x軸上的另一點(diǎn)A,它的對(duì)稱軸x=2與x軸交于點(diǎn)C,直線y=-2x-1與拋物線y=a2+bx交于點(diǎn)B(-2,m),且y軸、直線x=2分別交于點(diǎn)D、E.
(1)求m的值及該拋物線對(duì)應(yīng)的函數(shù)解析式;
(2)試判斷△ECB的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:拋物線y=ax2+4ax+t與x軸的一個(gè)交點(diǎn)為A(-1,0),另一個(gè)交點(diǎn)為B.
(1)求點(diǎn)B的坐標(biāo);
(2)D是拋物線與y軸的交點(diǎn),C是拋物線上的一點(diǎn),且以AB為一底的梯形ABCD的面積為9,求此拋物線的解析式;
(3)已知直線y=k與拋物線不相交,且拋物線上任意一點(diǎn)到這條直線的距離與這一點(diǎn)到點(diǎn)F(-2,-
3
4
a
)的距離相等,則k的值為______.(直接寫答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,拋物線y=ax2+bx+c與x軸相交于兩點(diǎn)A(1,0),B(3,0)與y軸相交于點(diǎn)C(0,3),
(l)求拋物線的函數(shù)關(guān)系式;
(2)若點(diǎn)D(4,m)是拋物線y=ax2+bx+c上一點(diǎn),請(qǐng)求出m的值,并求出此時(shí)△ABD的面積;
(3)若點(diǎn)A(x1,y1)、B(x2,y2)是該二次函數(shù)圖象上的兩點(diǎn),且-1<x1<0,1<x2<2,試比較兩函數(shù)值的大小:y1______y2;
(4)若自變量x的取值范圍是0≤x≤5,則函數(shù)值y的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

音樂噴泉的某一個(gè)噴水口,噴出的一束水流形狀是拋物線,在這束水流所在平面建立平面直角坐標(biāo)系,以水面與此面的相交線為x軸,以噴水管所在的鉛垂線為y軸,噴出的水流拋物線的解析式為:y=-x2+bx+2.但控制進(jìn)水速度,可改變噴出的水流達(dá)到的最大高度,及落在水面的落點(diǎn)距噴水管的水平距離.
(1)噴出的水流拋物線與拋物線y=ax2的形狀相同,則a=______;
(2)落在水面的落點(diǎn)距噴水管的水平距離為2個(gè)單位長(zhǎng)時(shí),求水流拋物線的解析式;
(3)求出(2)中的拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱軸;
(4)對(duì)于水流拋物線y=-x2+bx+2.當(dāng)b=b1時(shí),落在水面的落點(diǎn)坐標(biāo)為M(m,0),當(dāng)b=b2時(shí),落在水面的落點(diǎn)坐標(biāo)為N(n,0),點(diǎn)M與點(diǎn)N都在x軸的正半軸,且點(diǎn)M在點(diǎn)N的右邊,試比較b1與b2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=-x2+bx+c(c>0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,且OB=OC=3,頂點(diǎn)為M.
(1)求二次函數(shù)的解析式;
(2)點(diǎn)P為線段BM上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線PQ,垂足為Q,若OQ=m,四邊形ACPQ的面積為S,求S關(guān)于m的函數(shù)解析式,并寫出m的取值范圍;
(3)探索:線段BM上是否存在點(diǎn)N,使△NMC為等腰三角形?如果存在,求出點(diǎn)N的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某種商品在30天內(nèi)每件銷售價(jià)格P(元)與時(shí)間t(天)的函數(shù)關(guān)系用如圖所示的兩條線段表示,該商品在30天內(nèi)日銷售量Q(件)與時(shí)間t(天)之間的函數(shù)關(guān)系是Q=-t+40(0<t≤30,t是整數(shù)).
(1)求該商品每件的銷售價(jià)格P與時(shí)間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(2)求該商品的日銷售金額的最大值,并指出日銷售金額最大的一天是30天中的第幾天?(日銷售金額=每件的銷售價(jià)格×日銷售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知如圖,拋物線t=ax2+bx+c與x軸相交于B(1,0)、C(4,0)兩點(diǎn),與y軸的正半軸相交于A點(diǎn),過A、B、C三點(diǎn)的⊙P與y軸相切于點(diǎn)A,M為y軸負(fù)半軸上的一個(gè)動(dòng)點(diǎn),直線MB交拋物線于N,交⊙P于D.
(1)填空:A點(diǎn)坐標(biāo)是______,⊙P半徑的長(zhǎng)是______,a=______,b=______,c=______;
(2)若S△BNC:S△AOB=15:2,求N點(diǎn)的坐標(biāo);
(3)若△AOB與以A、B、D為頂點(diǎn)的三角形相似,求MB•MD的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案